A053672 Least number coprime to n, n+1, n+2 and n+3.
5, 7, 7, 11, 11, 5, 11, 7, 7, 7, 5, 11, 11, 11, 7, 5, 7, 11, 13, 13, 5, 7, 7, 7, 11, 5, 11, 11, 7, 7, 5, 13, 13, 11, 11, 5, 7, 7, 11, 11, 5, 13, 7, 7, 7, 5, 11, 11, 11, 7, 5, 7, 13, 13, 13, 5, 7, 7, 7, 11, 5, 11, 17, 7, 7, 5, 11, 11, 11, 11, 5, 7, 7, 13, 17, 5, 17, 7, 7, 7, 5, 11, 11, 11, 7
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Data.List (elemIndex) import Data.Maybe (fromJust) a053672 n = 2 + fromJust (elemIndex 1 $ map (gcd $ foldl1 lcm $ take 4 [n..]) [2..]) -- Reinhard Zumkeller, Sep 25 2011
-
Mathematica
a[n_] := (k = 5; While[ ! (CoprimeQ[k, n] && CoprimeQ[k, n+1] && CoprimeQ[k, n+2] && CoprimeQ[k, n+3]), k++]; k); Table[a[n], {n, 1, 85}](* Jean-François Alcover, Nov 30 2011 *) Table[Module[{k=3},While[!And@@CoprimeQ[n+Range[0,3],Prime[k]],k++];Prime[k]],{n,90}] (* Harvey P. Dale, May 10 2012 *)
-
PARI
a(n)=forprime(p=5,,if((n+3)%p>3,return(p))) \\ Charles R Greathouse IV, Jun 20 2013
Formula
5 <= a(n) <= (4 + o(1)) log n. - Charles R Greathouse IV, Jun 20 2013
Extensions
More terms from James Sellers, Feb 22 2000