A053685 Primes p > 7 which are congruent to 2 or 4 (mod 5) for which 2p-1 is also prime.
19, 37, 79, 97, 139, 157, 199, 229, 307, 337, 367, 379, 439, 499, 547, 577, 607, 619, 727, 829, 877, 937, 967, 997, 1009, 1069, 1237, 1279, 1297, 1399, 1429, 1459, 1609, 1627, 1657, 1759, 1867, 2029, 2089, 2137, 2179, 2467, 2539, 2557, 2617, 2707, 2719
Offset: 1
Examples
Note that 19 is prime and so is 2*19-1 or 37.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Vladimir Drobot, On primes in the Fibonacci sequence, Fib. Quart. 38 (1) (2000) 71.
Crossrefs
Cf. A000045.
Programs
-
Haskell
a053685 n = a053685_list !! (n-1) a053685_list = dropWhile (<= 7) $ i a047211_list a005382_list where i xs'@(x:xs) ys'@(y:ys) | x < y = i xs ys' | x > y = i xs' ys | otherwise = x : i xs ys -- Reinhard Zumkeller, Oct 03 2012
-
Mathematica
okQ[n_]:=Module[{x=Mod[n,5]},PrimeQ[2n-1]&&MemberQ[{2,4},x]]; Select[Prime[Range[5,500]],okQ] (* Harvey P. Dale, Jan 14 2011 *)
Comments