cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053694 Number of self-conjugate 5-core partitions of n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 2, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 2, 0
Offset: 0

Views

Author

James Sellers, Feb 14 2000

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + x + x^3 + x^4 + x^7 + x^8 + x^9 + 2*x^12 + x^15 + 2*x^16 + x^17 + ...
q + q^2 + q^4 + q^5 + q^8 + q^9 + q^10 + 2*q^13 + q^16 + 2*q^17 + q^18 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 258, Entry 9(iii).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[3, 0, q]^2 - EllipticTheta[3, 0, q^5]^2) / (4 q), {q, 0, n}] (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[-q, q^2] QPochhammer[q^5, q^5] QPochhammer[q^20, q^20], {q, 0, n}] (* Michael Somos, Jul 11 2011 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=0, n\2, 1 + x^(2*k + 1), 1 + x * O(x^n)) * prod( k=0, n\10, (1 - x^(10*k + 10))^2 / (1 + x^(10*k + 5)), 1 + x*O(x^n)), n))}
    
  • PARI
    {a(n) = if( n<0, 0, n++; sumdiv( n, d, kronecker( -100, d)))}
    
  • PARI
    {a(n) = if( n<0, 0, n++; direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( -100, p) * X))[n])}
    
  • PARI
    {a(n) = local(A); if(n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^5 + A) * eta(x^20 + A) / eta(x + A) / eta(x^4 + A), n))}

Formula

G.f.: product((1-q^(10*i))^2*(1-q^(10*i-5))*(1-q^(4*i-2))/((1-q^(2*i-1))*(1-q^(20*i-10))), i=1..200)
a(n) = b(n + 1) where b(n) is multiplicative and b(2^e) = b(5^e) = 1, b(p^e) = e+1 if p == 1, 5 (mod 8), b(p^e) = (1+(-1)^e)/2 if p == 3, 7 (mod 8).
Expansion of (phi(x)^2 - phi(x^5)^2) / (4*x) = chi(x) * f(-x^5) * f(-x^20) in powers of x where phi(), chi(), f() are Ramanujan theta functions.
From Michael Somos, Apr 25 2003: (Start)
Expansion of q^(-1) * eta(q^2)^2 * eta(q^5) * eta(q^20) / (eta(q) * eta(q^4)) in powers of q.
Euler transform of period 20 sequence [1, -1, 1, 0, 0, -1, 1, 0, 1, -2, 1, 0, 1, -1, 0, 0, 1, -1, 1, -2, ...].
G.f.: Product_{k>0} (1 - x^(10*k))^2 * (1 + x^(2*k - 1)) / (1 + x^(10*k - 5)). (End)
a(4*n) = A122190(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/5. - Amiram Eldar, Jan 27 2024