A053696 Numbers that can be represented as a string of three or more 1's in a base >= 2.
7, 13, 15, 21, 31, 40, 43, 57, 63, 73, 85, 91, 111, 121, 127, 133, 156, 157, 183, 211, 241, 255, 259, 273, 307, 341, 343, 364, 381, 400, 421, 463, 507, 511, 553, 585, 601, 651, 703, 757, 781, 813, 820, 871, 931, 993, 1023, 1057, 1093, 1111, 1123, 1191
Offset: 1
Examples
a(5) = 31 because 31 can be written as 111 base 5 (or indeed 11111 base 2).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1172 terms from T. D. Noe)
- Bernard Schott, Les nombres brésiliens, Quadrature, no. 76, avril-juin 2010, pages 30-38; included here with permission from the editors of Quadrature.
Crossrefs
Programs
-
Haskell
a053696 n = a053696_list !! (n-1) a053696_list = filter ((> 1) . a088323) [2..] -- Reinhard Zumkeller, Jan 22 2014, Nov 26 2013
-
Maple
N:= 10^4: # to get all terms <= N V:= Vector(N): for b from 2 while (b^3-1)/(b-1) <= N do inds:= [seq((b^k-1)/(b-1), k=3..ilog[b](N*(b-1)+1))]; V[inds]:= 1; od: select(t -> V[t] = 1, [$1..N]); # Robert Israel, Dec 10 2015
-
Mathematica
fQ[n_] := Block[{d = Rest@ Divisors[n - 1]}, Length@ d > 2 && Length@ Select[ IntegerDigits[n, d], Union@# == {1} &] > 1]; Select[ Range@ 1200, fQ] lim=1000; Union[Reap[Do[n=3; While[a=(b^n-1)/(b-1); a<=lim, Sow[a]; n++], {b, 2, Floor[Sqrt[lim]]}]][[2, 1]]] Take[Union[Flatten[With[{l=Table[PadLeft[{},n,1],{n,3,100}]}, Table[ FromDigits[#,n]&/@l,{n,2,100}]]]],80] (* Harvey P. Dale, Oct 06 2011 *)
-
PARI
list(lim)=my(v=List(),e,t);for(b=2,sqrt(lim),e=3;while((t=(b^e-1)/(b-1))<=lim,listput(v,t);e++));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Oct 06 2011
-
PARI
list(lim)=my(v=List(),e,t);for(b=2,lim^(1/3),e=4;while((t=(b^e-1)/(b-1))<=lim,listput(v,t);e++));vecsort(concat(Vec(v), vector((sqrtint (lim\1*4-3)-3)\2,i,i^2+3*i+3)),,8) \\ Charles R Greathouse IV, May 30 2013
Formula
a(n) ~ n^2 since as n grows the density of repunits of degree 2 among all the repunits tends to 1. - Daniel Forgues, Dec 09 2008
A088323(a(n)) > 1. - Reinhard Zumkeller, Jan 22 2014
Comments