A053698 a(n) = n^3 + n^2 + n + 1.
1, 4, 15, 40, 85, 156, 259, 400, 585, 820, 1111, 1464, 1885, 2380, 2955, 3616, 4369, 5220, 6175, 7240, 8421, 9724, 11155, 12720, 14425, 16276, 18279, 20440, 22765, 25260, 27931, 30784, 33825, 37060, 40495, 44136, 47989, 52060, 56355, 60880
Offset: 0
Examples
a(2) = 15 because 2^3 + 2^2 + 2 + 1 = 8 + 4 + 2 + 1 = 15. a(3) = 40 because 3^3 + 3^2 + 3 + 1 = 27 + 9 + 3 + 1 = 40. a(4) = 85 because 4^3 + 4^2 + 4 + 1 = 64 + 16 + 4 + 1 = 85. From _Bruno Berselli_, Jan 02 2017: (Start) The terms of the sequence are provided by the row sums of the following triangle (see the seventh formula in the previous section): . 1; . 3, 1; . 9, 5, 1; . 19, 13, 7, 1; . 33, 25, 17, 9, 1; . 51, 41, 31, 21, 11, 1; . 73, 61, 49, 37, 25, 13, 1; . 99, 85, 71, 57, 43, 29, 15, 1; . 129, 113, 97, 81, 65, 49, 33, 17, 1; . 163, 145, 127, 109, 91, 73, 55, 37, 19, 1; . 201, 181, 161, 141, 121, 101, 81, 61, 41, 21, 1; ... Columns from the first to the fifth, respectively: A058331, A001844, A056220 (after -1), A059993, A161532. Also, eighth column is A161549. (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[n^3+n^2+n+1: n in [0..50]]; // Vincenzo Librandi, May 01 2011
-
Maple
A053698:=n->n^3 + n^2 + n + 1; seq(A053698(n), n=0..50); # Wesley Ivan Hurt, Apr 22 2014
-
Mathematica
Table[n^3 + n^2 + n + 1, {n, 0, 39}] (* Alonso del Arte, Apr 22 2014 *) FromDigits["1111", Range[0, 50]] (* Paolo Xausa, May 11 2024 *)
-
PARI
Vec((1 + 5*x^2) / (1 - x)^4 + O(x^50)) \\ Colin Barker, Jan 02 2017
-
Python
def a(n): return (n**3+n**2+n+1) # Torlach Rush, May 08 2024
Formula
For n >= 2, a(n) = (n^4-1)/(n-1) = A024002(n)/A024000(n) = A002522(n)*(n+1) = A002061(n+1) + A000578(n).
G.f.: (1+5*x^2) / (1-x)^4. - Colin Barker, Jan 06 2012
a(n) = -A062158(-n). - Bruno Berselli, Jan 26 2016
a(n) = Sum_{i=0..n} 2*n*(n-i)+1. - Bruno Berselli, Jan 02 2017
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. - Colin Barker, Jan 02 2017
E.g.f.: exp(x)*(x^3+4*x^2+3*x+1). - Nikolaos Pantelidis, Feb 06 2023
Comments