A053716 a(n) = 1111111 in base n.
7, 127, 1093, 5461, 19531, 55987, 137257, 299593, 597871, 1111111, 1948717, 3257437, 5229043, 8108731, 12204241, 17895697, 25646167, 36012943, 49659541, 67368421, 90054427, 118778947, 154764793, 199411801, 254313151, 321272407, 402321277, 499738093
Offset: 1
Examples
a(3)=1093 because 1111111 base 3=729+243+81+27+9+3+1=121.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
- Index to values of cyclotomic polynomials of integer argument
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Magma
[7] cat [(n^7-1)/(n-1): n in [2..35]]; // Vincenzo Librandi, Feb 08 2014
-
Maple
A053716 := proc(n) numtheory[cyclotomic](7,n) ; end proc: seq(A053716(n),n=1..20) ; # R. J. Mathar, Feb 07 2014
-
Mathematica
Table[FromDigits["1111111",n],{n,1,30}](*or*)Table[n^6+n^5+n^4+n^3+n^2+n+1,{n,1,60}] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *) CoefficientList[Series[-(x^6 - 6 x^5 + 57 x^4 + 232 x^3 + 351 x^2 + 78 x + 7)/(x - 1)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 08 2014 *)
Formula
a(n) = n^6+n^5+n^4+n^3+n^2+n+1 = (n^7-1)/(n-1).
G.f.: -x*(x^6-6*x^5+57*x^4+232*x^3+351*x^2+78*x+7)/(x-1)^7. - Colin Barker, Oct 29 2012
E.g.f.: exp(x)*(1 + 6*x + 57*x^2 + 122*x^3 + 76*x^4+ 16*x^5 + x^6) - 1. - Stefano Spezia, Oct 03 2024
Comments