A053762 Number of 3-colored generalized Frobenius partitions of n.
1, 9, 27, 82, 207, 486, 1055, 2205, 4374, 8427, 15696, 28539, 50630, 88119, 150417, 252727, 418068, 682344, 1099343, 1750968, 2758185, 4301682, 6645150, 10175625, 15451744, 23281686, 34819227, 51712860, 76292784, 111850740, 162997314
Offset: 0
Examples
1 + 9*x + 27*x^2 + 82*x^3 + 207*x^4 + 486*x^5 + 1055*x^6 + 2205*x^7 + ... 1/q + 9*q^7 + 27*q^15 + 82*q^23 + 207*q^31 + 486*q^39 + 1055*q^47 + 2205*q^55 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- G. E. Andrews, Generalized Frobenius Partitions, AMS Memoir 301, 1984 (sequence is denoted c\phi_3(n)).
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
nmax = 30; CoefficientList[Series[(Product[(1 - x^k)^3, {k, 1, nmax}] + 9*x*Product[(1 - x^(9*k))^3, {k, 1, nmax}]) / Product[((1 - x^k)^3*(1 - x^(3*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 13 2016 *) a[n_]:= SeriesCoefficient[q^(1/8)*(eta[q]^3 + 9*eta[q^9]^3)/(eta[q]^3* eta[q^3]), {q, 0, n}]; Table[a[n], {n,0,50}] (* G. C. Greubel, Feb 08 2018 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3) / (eta(x + A)^3 * eta(x^3 + A)), n))} /* Michael Somos, Mar 09 2011 */
Formula
Expansion of q^(1/8) * (eta(q)^3 + 9 * eta(q^9)^3) / (eta(q)^3 * eta(q^3)) in powers of q. - Michael Somos, Mar 09 2011
Expansion of a(x) / f(-x)^3 in powers of x where a() is a cubic AGM theta function and f() is a Ramanujan theta function. - Michael Somos, Aug 21 2012
a(n) ~ exp(sqrt(2*n)*Pi)/(4*sqrt(3)*n). - Vaclav Kotesovec, Nov 13 2016
Comments