cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A053725 Number of n X n binary matrices of order dividing 3 (also number of solutions to X^3=I in GL(n,2)).

Original entry on oeis.org

1, 3, 57, 1233, 75393, 19109889, 6326835201, 6388287561729, 23576681450405889, 120906321631678693377, 1968421511613895105052673, 111055505036706392268074909697, 8965464105556083354144035638870017
Offset: 1

Views

Author

Vladeta Jovovic, Mar 23 2000

Keywords

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

Programs

  • PARI
    \\ See Morison theorem 2.6
    \\ F(n,q,k) is number of solutions to X^k=I in GL(i, GF(q)) for i=1..n.
    \\ q is power of prime and gcd(q, k) = 1.
    B(n,q,e)={sum(m=0, n\e, x^(m*e)/prod(k=0, m-1, q^(m*e)-q^(k*e)))}
    F(n,q,k)={if(gcd(q,k)<>1, error("no can do")); my(D=ffgen(q)^0); my(f=factor(D*(x^k-1))); my(p=prod(i=1, #f~, (B(n, q, poldegree(f[i,1])) + O(x*x^n))^f[i,2])); my(r=B(n,q,1)); vector(n, i, polcoeff(p, i)/polcoeff(r, i))}
    F(10, 2, 3) \\ Andrew Howroyd, Jul 09 2018

A053852 Number of n X n matrices over GF(3) of order dividing 7 (i.e., number of solutions of X^7=I in GL(n,3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 115562653240321, 92079975413927255041, 55043567702937434517811201, 30375957967569132050957664153601, 16344540545803963971405840043681904641, 8722002954856094967866703998081059674593281, 1007937807674669630303410866111304336524953920798402867201
Offset: 1

Views

Author

Vladeta Jovovic, Mar 28 2000

Keywords

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

Programs

Extensions

a(10)-a(12) from Andrew Howroyd, Jul 09 2018

A053862 Number of n X n matrices over GF(4) of order dividing 7 (i.e., number of solutions of X^7=I in GL(n,4)).

Original entry on oeis.org

1, 1, 5761, 31334401, 136768389121, 820260207643852801, 18335066086016219275591681, 328113739821565326934355528908801, 13331506915406061943466437913131131863041, 709215733340453866919693651825288232662162472960001, 51979148071106263356020510647871238516054065671329809222860801
Offset: 1

Views

Author

Vladeta Jovovic, Mar 28 2000

Keywords

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

Programs

Extensions

a(8)-a(11) from Andrew Howroyd, Jul 09 2018
Showing 1-3 of 3 results.