cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A053722 Number of n X n binary matrices of order dividing 2 (also number of solutions to X^2=I in GL(n,2)).

Original entry on oeis.org

1, 4, 22, 316, 6976, 373024, 32252032, 6619979776, 2253838544896, 1810098020122624, 2442718932612677632, 7758088894129169760256, 41674675294431186817908736, 526370120583359572695165435904, 11281778621698661853306239290703872
Offset: 1

Views

Author

Vladeta Jovovic, Mar 23 2000

Keywords

Comments

In characteristic 2, A^2 = I if and only if B^2 = 0 where B = I + A, so a(n) is also equal to the number of n X n binary matrices B such that B^2 = 0.
Conjecture: the two matrices I and 0 have the largest number of square roots. Checked for n=1..5. - Alexey Slizkov, Jan 11 2024

References

  • Vladeta Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

Programs

  • Maple
    Q:= Product(1+u/2^i,i=1..infinity)/Product(1-u^2/2^i,i=1..infinity):
    S:= series(Q,u,31):
    seq(coeff(S,u,n)*mul(2^i-1,i=1..n), n=1..30); # Robert Israel, Mar 26 2018
  • Mathematica
    QP = QPochhammer; Q = (1-x) QP[-x, 1/2]/QP[x^2, 1/2];
    Table[(-1)^n QP[2, 2, n] SeriesCoefficient[Q, {x, 0, n}], {n, 1, 14}] (* Jean-François Alcover, Sep 17 2018, from Maple *)
  • SageMath
    g = lambda n: GL(n,2).order() if n>0 else 1
    a053722 = lambda n: g(n)*sum(1/(g(k)*g(n-2*k)*2**(k**2+2*k*(n-2*k))) for k in range(1+floor(n/2))) if n>0 else 0
    map(a053722, range(25))
    # Dmitrii Pasechnik, Oct 02 2015

Formula

a(n) = Sum_{k=0..floor(n/2)} (2^n - 1)(2^{n-1} - 1) ... (2^{n-2k+1}-1) * 2^{k(k-1)/2} / ((2^k - 1)(2^{k-1} - 1) ... (2^1 - 1)). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 05 2001 [Corrected using the paper by Morrison, which also mentions that there is an error in this entry. k = 0 contributes 1 to the sum. If omitted, this gives the number of matrices of order exactly 2. Jan Kristian Haugland, Apr 24 2024]

A063393 Number of solutions of x^10=1 in general affine group AGL(n,2).

Original entry on oeis.org

2, 10, 92, 23200, 21391520, 35841831040, 95709758320640, 6206883395497062400, 1502803598296957497344000, 654083813715060854940290252800, 450433384822340709737677746549555200
Offset: 1

Views

Author

Vladeta Jovovic, Jul 16 2001

Keywords

Crossrefs

A063385 Number of solutions of x^2=1 in general affine group AGL(n,2).

Original entry on oeis.org

2, 10, 92, 1696, 59552, 4124800, 556101632, 148425895936, 78099471368192, 81705857229783040, 169694608681978560512, 702657511446831375056896, 5797142351555426979908943872, 95500953266115919784543392890880, 3140561514292519005433439594146168832
Offset: 1

Views

Author

Vladeta Jovovic, Jul 16 2001

Keywords

Crossrefs

Extensions

More terms from Sean A. Irvine, Apr 23 2023

A053770 Number of n X n binary matrices of order dividing 5 (i.e., number of solutions of X^5=I in GL(n,2)).

Original entry on oeis.org

1, 1, 1, 1345, 666625, 223985665, 65019838465, 105072058957825, 11436238073940148225, 997931868985434228916225, 74706800043914446529756135425, 5321514758546715999509008953114625, 3721818216683598164434468712927276826625
Offset: 1

Views

Author

Vladeta Jovovic, Mar 24 2000

Keywords

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

Programs

Extensions

a(13) from Andrew Howroyd, Jul 09 2018

A053777 Number of n X n binary matrices of order dividing 12 (i.e., number of solutions of X^12=I in GL(n,2)).

Original entry on oeis.org

1, 6, 120, 10368, 2582208, 3143720448, 11692182896640, 219197554267521024, 12804488375721592356864, 3325324798296500862330077184, 2537067900325971750395878897090560, 8900626797123384385697033838119859781632, 65799342288255766009804607851267459830106816512
Offset: 1

Views

Author

Vladeta Jovovic, Mar 24 2000

Keywords

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

Extensions

More terms from Sean A. Irvine, Jan 16 2022

A053771 Number of n X n binary matrices of order dividing 6 (i.e., number of solutions of X^6=I in GL(n,2)).

Original entry on oeis.org

1, 6, 78, 6588, 1332288, 1335398688, 2230748717184, 13819713971871744, 219439188546028498944, 16360198814356838801178624, 3333281205541847127897252298752, 2704161270841324410691567986117967872
Offset: 1

Views

Author

Vladeta Jovovic, Mar 24 2000

Keywords

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

A053773 Number of n X n binary matrices of order dividing 8 (i.e., number of solutions of X^8=I in GL(n,2)).

Original entry on oeis.org

1, 1, 4, 64, 4096, 1048576, 1073741824, 4398046511104, 72057594037927936, 1989505896802466922496, 164384949539438492410445824, 47902612878717208996830483841024
Offset: 0

Views

Author

Vladeta Jovovic, Mar 24 2000

Keywords

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

A062250 Number of cyclic subgroups of Chevalley group A_n(2) (the group of nonsingular n X n matrices over GF(2) ).

Original entry on oeis.org

1, 5, 79, 6974, 2037136, 2890467344, 14011554132032, 325330342132674560, 27173394819858612320256, 10158190320726534408118452224, 13156630408268153048253765001412608, 80280189722884518774834501142737770774528
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 01 2001

Keywords

Examples

			a(3) = 1/phi(1)+21/phi(2)+56/phi(3)+42/phi(4)+48/phi(7) = 79.
		

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

Formula

a(n) = Sum_{d} |{g element of A_n(2): order(g)=d}|/phi(d), where phi=Euler totient function, cf. A000010.

Extensions

More terms from Vladeta Jovovic, Jul 04 2001

A063386 Number of solutions of x^3=1 in general affine group AGL(n,2).

Original entry on oeis.org

1, 9, 225, 6273, 968193, 307091457, 144510377985, 338450286215169, 1535613392752345089, 11693653105154832465921, 423384155808298738368118785, 29155340360444250715547947237377
Offset: 1

Views

Author

Vladeta Jovovic, Jul 16 2001

Keywords

Crossrefs

A053772 Number of n X n binary matrices of order dividing 7 (i.e., number of solutions of X^7=I in GL(n,2)).

Original entry on oeis.org

1, 1, 49, 5761, 476161, 457113601, 3439085027329, 18696142934507521, 144017748317668638721, 30063679011292374997401601, 10371304522603231166854078660609, 3639433320096084212920229480292679681, 18767347744724322162378748108305552459694081
Offset: 1

Views

Author

Vladeta Jovovic, Mar 24 2000

Keywords

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

Programs

Extensions

a(12)-a(13) from Andrew Howroyd, Jul 09 2018
Showing 1-10 of 30 results. Next