cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A063385 Number of solutions of x^2=1 in general affine group AGL(n,2).

Original entry on oeis.org

2, 10, 92, 1696, 59552, 4124800, 556101632, 148425895936, 78099471368192, 81705857229783040, 169694608681978560512, 702657511446831375056896, 5797142351555426979908943872, 95500953266115919784543392890880, 3140561514292519005433439594146168832
Offset: 1

Views

Author

Vladeta Jovovic, Jul 16 2001

Keywords

Crossrefs

Extensions

More terms from Sean A. Irvine, Apr 23 2023

A063406 Number of cyclic subgroups of order 3 of general affine group AGL(n,2).

Original entry on oeis.org

0, 4, 112, 3136, 484096, 153545728, 72255188992, 169225143107584, 767806696376172544, 5846826552577416232960, 211692077904149369184059392, 14577670180222125357773973618688
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2001

Keywords

Comments

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).

Crossrefs

Formula

a(n) = (A063386(n)-1)/2.

A063409 Number of cyclic subgroups of order 6 of general affine group AGL(n,2).

Original entry on oeis.org

0, 0, 112, 33600, 17387776, 25992336384, 82647777759232, 833357980338831360, 28526490693606372081664, 3614600380702981731403431936, 1544913993707932218852890836467712
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2001

Keywords

Comments

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).

Crossrefs

Formula

a(n) = (A063389(n)-A063386(n)-A063385(n)+1)/2.

A063412 Number of cyclic subgroups of order 9 of general affine group AGL(n,2).

Original entry on oeis.org

0, 0, 0, 0, 0, 3413114880, 27741797744640, 1358238417577574400, 158642247173060689920000, 19305274051251991346235310080, 12592116839628085308180342547415040
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2001

Keywords

Comments

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).

Crossrefs

Formula

a(n) = (A063392(n)-A063386(n))/6.
Showing 1-4 of 4 results.