cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A053763 a(n) = 2^(n^2 - n).

Original entry on oeis.org

1, 1, 4, 64, 4096, 1048576, 1073741824, 4398046511104, 72057594037927936, 4722366482869645213696, 1237940039285380274899124224, 1298074214633706907132624082305024, 5444517870735015415413993718908291383296, 91343852333181432387730302044767688728495783936
Offset: 0

Views

Author

Stephen G Penrice, Mar 29 2000

Keywords

Comments

Nilpotent n X n matrices over GF(2). Also number of simple digraphs (without self-loops) on n labeled nodes (see also A002416).
For n >= 1 a(n) is the size of the Sylow 2-subgroup of the Chevalley group A_n(4) (sequence A053291). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001
(-1)^ceiling(n/2) * resultant of the Chebyshev polynomial of first kind of degree n and Chebyshev polynomial of first kind of degree (n+1) (cf. A039991). - Benoit Cloitre, Jan 26 2003
The number of reflexive binary relations on an n-element set. - Justin Witt (justinmwitt(AT)gmail.com), Jul 12 2005
From Rick L. Shepherd, Dec 24 2008: (Start)
Number of gift exchange scenarios where, for each person k of n people,
i) k gives gifts to g(k) of the others, where 0 <= g(k) <= n-1,
ii) k gives no more than one gift to any specific person,
iii) k gives no single gift to two or more people and
iv) there is no other person j such that j and k jointly give a single gift.
(In other words -- but less precisely -- each person k either gives no gifts or gives exactly one gift per person to 1 <= g(k) <= n-1 others.) (End)
In general, sequences of the form m^((n^2 - n)/2) enumerate the graphs with n labeled nodes with m types of edge. a(n) therefore is the number of labeled graphs with n nodes with 4 types of edge. To clarify the comment from Benoit Cloitre, dated Jan 26 2003, in this context: simple digraphs (without self-loops) have four types of edge. These types of edges are as follows: the absent edge, the directed edge from A -> B, the directed edge from B -> A and the bidirectional edge, A <-> B. - Mark Stander, Apr 11 2019

Examples

			a(2)=4 because there are four 2 x 2 nilpotent matrices over GF(2):{{0,0},{0,0}},{{0,1},{0,0}},{{0,0},{1,0}},{{1,1,},{1,1}} where 1+1=0. - _Geoffrey Critzer_, Oct 05 2012
		

References

  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 521.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 5, Eq. (1.1.5).

Crossrefs

Programs

Formula

Sequence given by the Hankel transform (see A001906 for definition) of A059231 = {1, 1, 5, 29, 185, 1257, 8925, 65445, 491825, ...}; example: det([1, 1, 5, 29; 1, 5, 29, 185; 5, 29, 185, 1257; 29, 185, 1257, 8925]) = 4^6 = 4096. - Philippe Deléham, Aug 20 2005
a(n) = 4^binomial(n, n-2). - Zerinvary Lajos, Jun 16 2007
a(n) = Sum_{i=0..n^2-n} binomial(n^2-n, i). - Rick L. Shepherd, Dec 24 2008
G.f. A(x) satisfies: A(x) = 1 + x * A(4*x). - Ilya Gutkovskiy, Jun 04 2020
Sum_{n>=1} 1/a(n) = A319016. - Amiram Eldar, Oct 27 2020
Sum_{n>=0} a(n)*u^n/A002884(n) = Product_{r>=1} 1/(1-u/q^r). - Geoffrey Critzer, Oct 28 2021

A053725 Number of n X n binary matrices of order dividing 3 (also number of solutions to X^3=I in GL(n,2)).

Original entry on oeis.org

1, 3, 57, 1233, 75393, 19109889, 6326835201, 6388287561729, 23576681450405889, 120906321631678693377, 1968421511613895105052673, 111055505036706392268074909697, 8965464105556083354144035638870017
Offset: 1

Views

Author

Vladeta Jovovic, Mar 23 2000

Keywords

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

Programs

  • PARI
    \\ See Morison theorem 2.6
    \\ F(n,q,k) is number of solutions to X^k=I in GL(i, GF(q)) for i=1..n.
    \\ q is power of prime and gcd(q, k) = 1.
    B(n,q,e)={sum(m=0, n\e, x^(m*e)/prod(k=0, m-1, q^(m*e)-q^(k*e)))}
    F(n,q,k)={if(gcd(q,k)<>1, error("no can do")); my(D=ffgen(q)^0); my(f=factor(D*(x^k-1))); my(p=prod(i=1, #f~, (B(n, q, poldegree(f[i,1])) + O(x*x^n))^f[i,2])); my(r=B(n,q,1)); vector(n, i, polcoeff(p, i)/polcoeff(r, i))}
    F(10, 2, 3) \\ Andrew Howroyd, Jul 09 2018

A053853 Number of n X n matrices over GF(3) of order dividing 8 (i.e., number of solutions of X^8=I in GL(n,3)).

Original entry on oeis.org

2, 32, 4448, 3816128, 26288771456, 1354765603506176, 413011432853757876224, 1232292753203369699693195264, 12961108500525078696110888464867328, 1011066029229309888379062265909092037296128, 580367747201355872811056515502067372016693810429952
Offset: 1

Views

Author

Vladeta Jovovic, Mar 28 2000

Keywords

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

Programs

Extensions

a(10)-a(11) from Andrew Howroyd, Jul 09 2018

A053863 Number of n X n matrices over GF(4) of order dividing 8 (i.e., number of solutions of X^8=I in GL(n,4)).

Original entry on oeis.org

1, 16, 4096, 16777216, 1099511627776, 1152921504606846976, 19342813113834066795298816, 5192296858534827628530496329220096, 1827518932224469344166560742969204503740416, 8345148615544463142173361464077806670258417671602176
Offset: 1

Views

Author

Vladeta Jovovic, Mar 28 2000

Keywords

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

Cf. A053773.
Cf. A053765.

Extensions

More terms from Sean A. Irvine, Jan 16 2022

A053877 Number of elements of order 8 in GL(n,2).

Original entry on oeis.org

0, 0, 0, 0, 624960, 944939520, 4266926899200, 71625854051942400, 1986746267331377233920, 164332724129181202215075840, 47899373560729916144902314393600, 52417115824922043292862127287776051200, 220441395199404954061534047500928748596756480
Offset: 1

Views

Author

Vladeta Jovovic, Mar 30 2000

Keywords

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

Formula

a(n) = A053773(n) - A053718(n).

Extensions

More terms from Sean A. Irvine, Jan 16 2022
Showing 1-5 of 5 results.