cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053809 Second partial sums of A001891.

Original entry on oeis.org

1, 6, 21, 57, 133, 281, 554, 1039, 1878, 3302, 5686, 9638, 16143, 26796, 44179, 72471, 118435, 193015, 313920, 509805, 827036, 1340636, 2171996, 3517532, 5695053, 9218786, 14920769, 24147269, 39076593, 63233317, 102320326
Offset: 0

Views

Author

Barry E. Williams, Mar 27 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Right-hand column 9 of triangle A011794. Pairwise sums of A014166.

Programs

  • GAP
    List([0..40], n-> Fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6) # G. C. Greubel, Jul 06 2019
  • Magma
    [Fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6: n in [0..40]]; // G. C. Greubel, Jul 06 2019
    
  • Mathematica
    Table[Fibonacci[n+10] - (2*n^3+27*n^2+145*n+324)/6, {n,0,40}] (* G. C. Greubel, Jul 06 2019 *)
  • PARI
    vector(40, n, n--; fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6) \\ G. C. Greubel, Jul 06 2019
    
  • Sage
    [fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6 for n in (0..40)] # G. C. Greubel, Jul 06 2019
    

Formula

a(n) = a(n-1) + a(n-2) + (2*n+3)*C(n+2, 2)/3; a(-x)=0.
a(n) = Fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6.
G.f.: (1+x)/((1-x)^4*(1-x-x^2)).
a(n) = 5*a(n-1) - 9*a(n-2) + 6*a(n-3) + a(n-4) - 3*a(n-5) + a(n-6). - Wesley Ivan Hurt, Apr 21 2021