cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053818 a(n) = Sum_{k=1..n, gcd(n,k) = 1} k^2.

Original entry on oeis.org

1, 1, 5, 10, 30, 26, 91, 84, 159, 140, 385, 196, 650, 406, 620, 680, 1496, 654, 2109, 1080, 1806, 1650, 3795, 1544, 4150, 2756, 4365, 3164, 7714, 2360, 9455, 5456, 7370, 6256, 9940, 5196, 16206, 8778, 12324, 8560, 22140, 6972, 25585
Offset: 1

Views

Author

N. J. A. Sloane, Apr 07 2000

Keywords

Comments

Equals row sums of triangle A143612. - Gary W. Adamson, Aug 27 2008
a(n) = A175505(n) * A023896(n) / A175506(n). For number n >= 1 holds B(n) = a(n) / A023896(n) = A175505(n) / A175506(n), where B(n) = antiharmonic mean of numbers k such that GCD(k, n) = 1 for k < n. - Jaroslav Krizek, Aug 01 2010
n does not divide a(n) iff n is a term in A316860, that is, either n is a power of 2 or n is a multiple of 3 and no prime factor of n is congruent to 1 mod 3. - Jianing Song, Jul 16 2018

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 48, problem 15, the function phi_2(n).
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #2.

Crossrefs

Programs

  • Maple
    A053818 := proc(n)
        local a,k;
        a := 0 ;
        for k from 1 to n do
            if igcd(k,n) = 1 then
                a := a+k^2 ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Sep 26 2013
  • Mathematica
    a[n_] := Plus @@ (Select[ Range@n, GCD[ #, n] == 1 &]^2); Array[a, 43] (* Robert G. Wilson v, Jul 01 2010 *)
    a[1] = 1; a[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; (n^2/3) * Times @@ ((p - 1)*p^(e - 1)) + (n/6) * Times @@ (1 - p)]; Array[a, 100] (* Amiram Eldar, Dec 03 2023 *)
  • PARI
    a(n) = sum(k=1, n, k^2*(gcd(n,k) == 1)); \\ Michel Marcus, Jan 30 2016
    
  • PARI
    a(n) = {my(f = factor(n)); if(n == 1, 1, (n^2/3) * eulerphi(f) + (n/6) * prod(i = 1, #f~, 1 - f[i, 1]));} \\ Amiram Eldar, Dec 03 2023

Formula

If n = p_1^e_1 * ... *p_r^e_r then a(n) = n^2*phi(n)/3 + (-1)^r*p_1*..._p_r*phi(n)/6.
a(n) = n^2*A000010(n)/3 + n*A023900(n)/6, n>1. [Brown]
a(n) = (A000010(n)/3) * (n^2 + (-1)^A001221(n)*A007947(n)/2) for n>=2. - Jaroslav Krizek, Aug 24 2010
G.f. A(x) satisfies: A(x) = x*(1 + x)/(1 - x)^4 - Sum_{k>=2} k^2 * A(x^k). - Ilya Gutkovskiy, Mar 29 2020
Sum_{k=1..n} a(k) ~ n^4 / (2*Pi^2). - Amiram Eldar, Dec 03 2023