A053867 Parity of sum of divisors of n less than n.
0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1
Offset: 1
Examples
a(9) = 0 because sum of proper divisors of 9 is 1 + 3 = 4 which is an even number. From _David A. Corneth_, Oct 20 2017: (Start) a(25) = 0 because 25 is an odd square. Therefore, a(2*25) = a(50) = 1 - a(25) = 1 and a(100) = a(2*50) = 1. a(27) = 1 because 17 isn't an odd square. Therefore, a(2*27) = a(54) = 1-a(27) = 0 and a(108) = a(2*54) = 0. (End)
Links
Programs
-
Mathematica
a[n_] = Mod[DivisorSigma[1, n] - n, 2]; Array[a, 100] (* Amiram Eldar, Jan 30 2025 *)
-
PARI
A053867(n) = ((sigma(n)-n)%2); \\ Antti Karttunen, Oct 20 2017
-
PARI
first(n) = my(res = vector(n, i, i%2)); forstep(i=1,sqrtint(n),2, for(j=0,logint(n\i^2,2), c = i^2 << j; res[c] = 1 - res[c])); res \\ David A. Corneth, Oct 20 2017
Formula
a(n) = A001065(n) mod 2.
a(2n+1) = 1 - A010052(2n+1); a(4n + 2) = 1 - a(2n + 1); a(4n) = a(2n). - David A. Corneth, Oct 20 2017
From Amiram Eldar, Jan 30 2025: (Start)
a(n) = 0 if n is an odd square, 1 is n is either an even square or twice a square, and n mod 2 otherwise.
Sum_{k=1..n} a(k) = n/2 + sqrt(n/2) + o(sqrt(n)). (End)
Extensions
More terms from James Sellers, Apr 08 2000
Comments