A054004 Numbers k such that k and k+1 have the same number and sum of divisors.
14, 1334, 1634, 2685, 33998, 42818, 64665, 84134, 109214, 122073, 166934, 289454, 383594, 440013, 544334, 605985, 649154, 655005, 792855, 1642154, 2284814, 2305557, 2913105, 3571905, 3682622, 4701537, 5181045, 6431732
Offset: 1
Keywords
Examples
Divisors of 14 = {1, 2, 7, 14}, divisors of 15 = {1, 3, 5, 15}, both have four divisors and sum = 24.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1831 (calculated using the b-file at A002961; terms 1..967 from T. D. Noe)
Programs
-
Mathematica
Select[Range[100000], DivisorSigma[0, #] == DivisorSigma[0, # + 1] && DivisorSigma[1, #] == DivisorSigma[1, # + 1] &] (* Jayanta Basu, Mar 20 2013 *)
Extensions
More terms from Jud McCranie, Jun 02 2000