cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A002961 Numbers k such that k and k+1 have same sum of divisors.

Original entry on oeis.org

14, 206, 957, 1334, 1364, 1634, 2685, 2974, 4364, 14841, 18873, 19358, 20145, 24957, 33998, 36566, 42818, 56564, 64665, 74918, 79826, 79833, 84134, 92685, 109214, 111506, 116937, 122073, 138237, 147454, 161001, 162602, 166934
Offset: 1

Views

Author

Keywords

Comments

For the values of n < 2*10^10 in this sequence, sigma(n)/n is between 1.5 and 2.25. - T. D. Noe, Sep 17 2007
Whether this sequence is infinite is an unsolved problem, as noted in many of the references and links. - Franklin T. Adams-Watters, Jan 25 2010
144806446575 is the first term for which sigma(n)/n > 2.25. All n < 10^12 have sigma(n)/n > 3/2. - T. D. Noe, Feb 18 2010
A053222(a(n)) = 0. - Reinhard Zumkeller, Dec 28 2011
Numbers n such that n + 1 = antisigma(n+1) - antisigma(n), where antisigma(n) = A024816(n) = the sum of the non-divisors of n that are between 1 and n. Example for n = 14: 15 = antisigma(15) - antisigma(14) = 96 - 81. - Jaroslav Krizek, Nov 10 2013
Up to 10^13, the value of the sigma(n)/n varies between 1417728000/945151999 (attained for n = 2835455997) and 2913242112/1263730145 (for n = 5174974943775). - Giovanni Resta, Feb 26 2014
Also numbers n such that A242962(n) = A242962(n+1), with A242962(n) = T(n) mod antisigma(n), where T(n) = A000217(n) is the n-th triangular number and antisigma(n) = A024816(n) is the sum of numbers less than n which do not divide n. - Jaroslav Krizek, May 29 2014
Guy and Shanks construct 5559060136088313 as a term of this sequence. - Michel Marcus, Dec 29 2014
Note that in all cases, n and n+1 are composite. - Zak Seidov, May 03 2016

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • R. K. Guy, Unsolved Problems in Theory of Numbers, Sect. B13.
  • W. Sierpiński, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 110.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a002961 n = a002961_list !! (n-1)
    a002961_list = map (+ 1) $ elemIndices 0 a053222_list
    -- Reinhard Zumkeller, Dec 28 2011
  • Mathematica
    Flatten[Position[Partition[DivisorSigma[1,Range[170000]],2,1],{x_,x_}]] (* Harvey P. Dale, Aug 08 2011 *)
    SequencePosition[DivisorSigma[1,Range[200000]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 06 2018 *)
  • PARI
    t1=sigma(1);for(n=2,1e6,t2=sigma(n);if(t2==t1,print1(n-1", "));t1=t2) \\ Charles R Greathouse IV, Jul 15 2011
    

Formula

Sum_{n>=1} 1/a(n) is in the interval (0.080958, 610837) (Bayless and Kinlaw, 2015). - Amiram Eldar, Oct 15 2020

Extensions

More terms from Jud McCranie, Oct 15 1997

A338452 Numbers k such that k and k+1 have the same total binary weight of their divisors (A093653).

Original entry on oeis.org

3, 4, 7, 20, 31, 57, 94, 98, 118, 122, 127, 201, 213, 218, 230, 242, 243, 244, 334, 384, 393, 423, 429, 481, 565, 603, 633, 694, 704, 729, 766, 844, 921, 1138, 1141, 1221, 1262, 1401, 1533, 1654, 1726, 1761, 1837, 1838, 1862, 1882, 1942, 2162, 2245, 2361, 2362
Offset: 1

Views

Author

Amiram Eldar, Oct 28 2020

Keywords

Comments

Numbers k such that A093653(k) = A093653(k+1).
The Mersenne primes (A000668) are terms since if 2^p - 1 is a prime then A093653(2^p-1) = A093653(2^p) = p+1.

Examples

			3 is a term since A093653(3) = A093653(4) = 3.
		

Crossrefs

A000668 is a subsequence.

Programs

  • Mathematica
    f[n_] := DivisorSum[n, DigitCount[#, 2, 1] &]; s = {}; f1 = f[1]; Do[f2 = f[n]; If[f1 == f2, AppendTo[s, n - 1]]; f1 = f2, {n, 2, 240}]; s

A054005 Sum of divisors of k such that k and k+1 have the same number and sum of divisors.

Original entry on oeis.org

24, 2160, 2640, 4320, 51840, 65280, 115200, 138240, 194400, 186048, 276480, 483840, 622080, 700416, 950400, 984960, 1118880, 1128960, 1612800, 2661120, 3937248, 3617280, 5019840, 6128640, 5806080, 7375680, 8467200, 11583936
Offset: 1

Views

Author

Asher Auel, Jan 12 2000

Keywords

Examples

			See example in A054004.
		

Crossrefs

Programs

  • Mathematica
    Select[Partition[Table[{n,DivisorSigma[0,n],DivisorSigma[1,n]},{n,116*10^5}],2,1],#[[1,2]]== #[[2,2]] && #[[1,3]]==#[[2,3]]&][[All,1,3]] (* Harvey P. Dale, May 16 2023 *)

Formula

a(n) = sigma(A054004(n)).

Extensions

More terms from Jud McCranie, Oct 15 2000
Definition clarified by Harvey P. Dale, May 16 2023

A054006 Number of divisors of k and k+1 which have the same number and sum of divisors.

Original entry on oeis.org

4, 8, 8, 8, 8, 8, 16, 16, 16, 8, 16, 16, 16, 16, 16, 16, 16, 16, 32, 16, 16, 16, 16, 32, 16, 16, 16, 24, 16, 16, 16, 32, 32, 32, 16, 16, 32, 16, 32, 16, 16, 32, 32, 16, 32, 16, 16, 16, 16, 16, 32, 32, 16, 32, 16, 16, 64, 32, 16, 32, 16, 32, 16, 64, 32, 32, 16, 32, 32, 32, 32
Offset: 1

Views

Author

Asher Auel, Jan 12 2000

Keywords

Examples

			See example in A054004.
		

Crossrefs

Programs

  • Mathematica
    Select[Partition[Array[DivisorSigma[{0, 1}, #] &, 10^6], 2, 1], SameQ @@ # &][[All, 1, 1]] (* Michael De Vlieger, Nov 21 2019 *)

Formula

a(n) = tau(A054004(n)).

Extensions

More terms from Jud McCranie, Oct 15 2000

A054007 Numbers k such that k and k+1 have the same sum but an unequal number of divisors.

Original entry on oeis.org

206, 957, 1364, 2974, 4364, 14841, 18873, 19358, 20145, 24957, 36566, 56564, 74918, 79826, 79833, 92685, 111506, 116937, 138237, 147454, 161001, 162602, 174717, 190773, 193893, 201597, 230390, 274533, 347738, 416577, 422073, 430137
Offset: 1

Views

Author

Asher Auel, Jan 12 2000

Keywords

Examples

			The divisors of 206 are 1, 2, 103, 206, so tau(206) = 4 and sigma(206) = 312; the divisors of 207 are 1, 3, 9, 23, 69, 207, so tau(207) = 6 and sigma(207) = 312. Hence, the integer 206 belongs to this sequence. - _Bernard Schott_, Oct 18 2019
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100000], DivisorSigma[0, #] != DivisorSigma[0, # + 1] && DivisorSigma[1, #] == DivisorSigma[1, # + 1] &] (* Jayanta Basu, Mar 20 2013 *)

Formula

Members of A002961 which are not members of A054004

Extensions

More terms from Jud McCranie, Oct 15 2000

A225758 Runs of consecutive numbers with the same number and sum of divisors.

Original entry on oeis.org

14, 15, 1334, 1335, 1634, 1635, 2685, 2686, 33998, 33999, 42818, 42819, 64665, 64666, 84134, 84135, 109214, 109215, 122073, 122074, 166934, 166935, 289454, 289455, 383594, 383595, 440013, 440014, 544334, 544335, 605985, 605986, 649154, 649155, 655005, 655006
Offset: 1

Views

Author

Jean-François Alcover, May 15 2013

Keywords

Comments

No triple found up to 10^9.

Examples

			Sequence begins:
14, 15;
1334, 1335;
1634, 1635;
2685, 2686;
33998, 33999;
etc.
		

Crossrefs

Cf. A225756 (same number of divisors), A225757 (same sum of divisors).
Cf. A054004 (first term of every run).

Programs

  • Mathematica
    sel = Select[Range[1000000], DivisorSigma[0, #] == DivisorSigma[0, #+1] && DivisorSigma[1, #] == DivisorSigma[1, #+1] &]; Union[sel, sel+1]

A276714 Numbers n such that n and n+3 have the same number and sum of divisors (A000005 and A000203).

Original entry on oeis.org

42677635, 276742235, 6439057062, 7512673242, 43592652562, 48847956255, 48880963215, 55018687182, 60184185702, 91484515395, 100774916235, 101926379835, 111886551315, 122388340095, 133012188855, 137978601142, 247631352255, 263171068875, 293467635615, 305946896255
Offset: 1

Views

Author

Jaroslav Krizek, Sep 16 2016

Keywords

Comments

Intersection of A015861 and A276713.
Also numbers n such that A229335(n) = A229335(n+3).

Examples

			42677635 is in sequence because tau(42677635) = tau(42677638) = 32 and sigma(42677635) = sigma(42677638) = 68769792.
		

Crossrefs

Cf. Similar sequences with numbers n such that n and n+k have the same number and sum of divisors for k=1: A054004, for k=2: A229254.

Programs

  • Magma
    [n: n in [A015861(k)] | NumberOfDivisors(n) eq  NumberOfDivisors(n+3) and SumOfDivisors(n) eq  SumOfDivisors(n+3)]

Extensions

More terms from Martin Ehrenstein, Jul 12 2024

A259495 Numbers k such that sigma(k) + phi(k) + d(k) = sigma(k+1) + phi(k+1) + d(k+1), where sigma(k) is the sum of the divisors of k, phi(k) the Euler totient function of k and d(k) the number of divisors of k.

Original entry on oeis.org

4, 285, 902, 2013, 8493, 37406, 61918, 90094, 120001, 184484, 250550, 303853, 352941, 360446, 375565, 501693, 724934, 889285, 940093, 995630, 1079662, 1473565, 1488957, 1517206, 1573045, 1581806, 1692302, 1864285, 2048973, 2693517, 3393934, 3509997, 4083526, 4194406
Offset: 1

Views

Author

Paolo P. Lava, Jun 29 2015

Keywords

Examples

			sigma(4) + phi(4) + d(4) = 7 + 2 + 3 = 12 and sigma(5) + phi(5) + d(5) = 6 + 4 + 2 = 12.
sigma(285) + phi(285) + d(285) = 480 + 144 + 8 = 632 and sigma(286) + phi(286) + d(286) = 504 + 120 + 8 = 632.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local n; for n from 1 to q do
    if sigma(n)+phi(n)+tau(n)=sigma(n+1)+phi(n+1)+tau(n+1)
    then print(n); fi; od; end: P(10^9);
  • Mathematica
    f[n_] := Module[{fct = FactorInteger[n]}, p = fct[[All, 1]]; e = fct[[All, 2]]; Times @@ (e + 1) + Times @@ ((p^(e + 1) - 1)/(p - 1)) + Times @@ ((p - 1)*p^(e - 1))]; f1 = 0; s = {}; Do[f2 = f[n]; If[f2 == f1, AppendTo[s, n - 1]];  f1 = f2, {n, 2, 10^5}]; s (* Amiram Eldar, Jul 12 2019 *)

A259496 Numbers n such that phi(n) + d(n) = phi(n+1) + d(n+1), where phi(n) is the Euler totient function of n and d(n) the number of divisors of n.

Original entry on oeis.org

5, 7, 104, 105, 1754, 3255, 16215, 22935, 67431, 93074, 983775, 1025504, 2200694, 2619705, 3365438, 4163355, 4447064, 4695704, 6372794, 7838265, 9718904, 11903775, 23992215, 26879684, 29357475, 37239735, 40588485, 41207144, 48615735, 56424555, 76466985, 81591194, 83864055
Offset: 1

Views

Author

Paolo P. Lava, Jun 29 2015

Keywords

Comments

So far, less than 10^9, except for 7, 67431 & 3365438, all terms have been congruent to 5 or 4 (mod 10). - Robert G. Wilson v, Jul 06 2015

Examples

			phi(5) + d(5) = 4 + 2 = 6 and phi(6) + d(6) = 2 + 4 = 6.
phi(7) + d(7) = 6 + 2 = 8 and phi(8) + d(8) = 4 + 4 = 8.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..6*10^6] | EulerPhi(n) + NumberOfDivisors(n) eq EulerPhi(n+1) + NumberOfDivisors(n+1)]; // Vincenzo Librandi, Jun 30 2015
  • Maple
    with(numtheory): P:=proc(q) local n; for n from 1 to q do
    if phi(n)+tau(n)=phi(n+1)+tau(n+1) then print(n); fi;
    od; end: P(10^9);
  • Mathematica
    a = k = 2; lst = {}; While[k < 100000001, b = EulerPhi[k] + DivisorSigma[0, k]; If[a == b, AppendTo[lst, k - 1]]; k++; a = b]; lst

Extensions

a(23)-a(33) from Robert G. Wilson v, Jul 05 2015

A276715 a(n) = the smallest number k such that k and k + n have the same number and sum of divisors (A000005 and A000203).

Original entry on oeis.org

1, 14, 33, 42677635, 51, 46, 155, 62, 69, 46, 174, 154, 285, 182, 141, 62, 138, 142, 235, 158, 123, 94, 213, 322, 295, 94, 177, 118, 159, 406, 376, 266, 177, 891528365, 321, 310, 355, 248, 249, 166, 213, 418, 376, 602, 426, 142, 570, 310, 445, 248, 249, 158
Offset: 0

Views

Author

Jaroslav Krizek, Sep 16 2016

Keywords

Comments

If a(33) exists, it must be greater than 2*10^8.
a(n) for n >= 34: 321, 310, 355, 248, 249, 166, 213, 418, 376, 602, 426, 142, 570, 310, 445, 248, 249, 158, 267, 406, 632, 166, 267, ...
The records occur at indices 0, 1, 2, 3, 33, 207, 471, ... with values 1, 14, 33, 42677635, 891528365, 2944756815, 3659575815, ... - Amiram Eldar, Feb 17 2019

Examples

			a(2) = 33 because 33 is the smallest number such that tau(33) = tau(35) = 4 and simultaneously sigma(33) = sigma(35) = 48.
		

Crossrefs

Cf. A065559 (smallest k such that tau(k) = tau(k+n)), A007365 (smallest k such that sigma(k) = sigma(k+n)).
Cf. Sequences with numbers n such that n and n+k have the same number and sum of divisors for k=1: A054004, for k=2: A229254, k=3: A276714.

Programs

  • Magma
    A276715:=func; [A276715(n):n in[0..32]]
    
  • Mathematica
    a[k_] := Module[{n=1}, While[DivisorSigma[0,n] != DivisorSigma[0,n+k] || DivisorSigma[1,n] != DivisorSigma[1,n+k], n++]; n]; Array[a, 50, 0] (* Amiram Eldar, Feb 17 2019 *)
  • Python
    from itertools import count
    from sympy import divisor_sigma
    def A276715(n): return next(k for k in count(1) if all(divisor_sigma(k,i)==divisor_sigma(n+k,i) for i in (0,1))) # Chai Wah Wu, Jul 25 2022

Extensions

a(33) onwards from Amiram Eldar, Feb 17 2019
Showing 1-10 of 14 results. Next