A054008 n read modulo (number of divisors of n).
0, 0, 1, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 3, 1, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 1, 2, 3, 2, 1, 8, 1, 2, 3, 4, 1, 6, 3, 0, 1, 2, 1, 0, 1, 2, 3, 1, 1, 2, 1, 2, 1, 6, 1, 0, 1, 2, 3, 4, 1, 6, 1, 0, 1, 2, 1, 0, 1, 2, 3, 0, 1, 6, 3, 2, 1, 2, 3, 0, 1, 2, 3, 1, 1, 6, 1, 0, 1
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a054008 n = n `mod` a000005 n -- Reinhard Zumkeller, Sep 17 2014
-
Maple
[ seq( i mod tau(i), i=1..130) ];
-
Mathematica
a[n_] := Mod[n, DivisorSigma[0, n]]; Array[a, 105] (* Jean-François Alcover, Sep 19 2017 *)
-
PARI
a(n) = n % numdiv(n); \\ Michel Marcus, Sep 19 2017
-
Python
from sympy import divisor_count def A054008(n): return n%divisor_count(n) # Chai Wah Wu, Mar 14 2023
Formula
a(n) = n mod tau(n).
Comments