A054030 Sigma(n)/n for n such that sigma(n) is divisible by n.
1, 2, 2, 3, 2, 3, 2, 4, 4, 3, 4, 4, 2, 4, 4, 3, 4, 3, 2, 5, 5, 4, 3, 4, 2, 4, 4, 5, 4, 5, 5, 4, 5, 5, 4, 4, 4, 5, 4, 4, 2, 5, 4, 5, 6, 5, 5, 5, 5, 5, 5, 6, 5, 5, 4, 5, 6, 5, 4, 4, 5, 4, 5, 4, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 5, 6, 5, 6, 6, 5, 4, 4, 5, 4, 4, 5, 6, 5, 5, 4, 6, 4, 4, 6, 5, 6, 6, 6, 6, 6, 6, 6, 5, 6
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1600 (using Flammenkamp's data)
- Achim Flammenkamp, The Multiply Perfect Numbers Page
- Eric Weisstein's World of Mathematics, Abundancy
Programs
-
Maple
with(numtheory): for i while i < 33000 do if sigma(i) mod i = 0 then print(sigma(i)/i) fi od;
-
PARI
for(n=1,1e7,if(denominator(k=sigma(n,-1))==1, print1(k", "))) \\ Charles R Greathouse IV, Mar 09 2014
Extensions
More terms from Jud McCranie, Jul 09 2000
More terms from David Wasserman, Jun 28 2004
Comments