A054036 Numbers n such that n^2 contains exactly 8 different digits.
3206, 3267, 3268, 3292, 3674, 3678, 3698, 3723, 3734, 4047, 4097, 4157, 4175, 4455, 4537, 4554, 4616, 4634, 4663, 4804, 4814, 4896, 4913, 4967, 4987, 5376, 5529, 5699, 5742, 5853, 5899, 5904, 5905, 5968, 6043, 6071, 6095, 6098, 6127, 6176, 6181, 6199
Offset: 1
Examples
3206 is in the sequence because 3206^2 = 10278436 and 10278436 contains exactly eight different digits: 0, 1, 2, 3, 4, 6, 7 and 8.
Links
- John Cerkan, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f := []; for i from 0 to 200 do if nops({op(convert(i^2,base,10))})=8 then f := [op(f),i] fi; od; f;
-
Mathematica
Select[Range[7000],Count[DigitCount[#^2],0]==2&] (* Harvey P. Dale, Aug 10 2017 *)