A054038 Numbers k such that k^2 contains every digit at least once.
32043, 32286, 33144, 35172, 35337, 35757, 35853, 37176, 37905, 38772, 39147, 39336, 40545, 42744, 43902, 44016, 45567, 45624, 46587, 48852, 49314, 49353, 50706, 53976, 54918, 55446, 55524, 55581, 55626, 56532, 57321, 58413, 58455
Offset: 1
References
- J.-M. De Koninck and A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 239 pp. 39; 178, Ellipses Paris 2004.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 4866 terms from Klaus Brockhaus)
Programs
-
Magma
IsA054038:=func< n | Seqset(Intseq(n^2)) eq {0,1,2,3,4,5,6,7,8,9} >; [ n: n in [1..60000] | IsA054038(n) ]; // Klaus Brockhaus, May 16 2011
-
Maple
f := []; for i from 0 to 200 do if nops({op(convert(i^2,base,10))})=10 then f := [op(f),i] fi; od; f;
-
Mathematica
A050278 = Select[FromDigits@#&/@Permutations[Range[0, 9], {10}], # > 10^9 &]; Sqrt[Select[A050278, IntegerQ[Sqrt[#]] &]] (* Alonso del Arte, Jun 18 2011, based on a program by Robert G. Wilson v *) Select[Sqrt[#]&/@FromDigits/@Select[Permutations[Range[0,9]],#[[1]]>0&], IntegerQ] (* Harvey P. Dale, May 26 2016 *)
-
PARI
is(n)=#vecsort(Vec(Str(n^2)),,8)==10 \\ Charles R Greathouse IV, Jun 18 2011
-
Python
def ok(n): return len(set(str(n**2))) == 10 print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Dec 23 2022
Extensions
More terms from David Wasserman, Feb 03 2005
Comments