cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A045574 Numbers that are still numbers when turned upside down (uses only digits 0, 1, 6, 8, 9 with no final 0's).

Original entry on oeis.org

0, 1, 6, 8, 9, 11, 16, 18, 19, 61, 66, 68, 69, 81, 86, 88, 89, 91, 96, 98, 99, 101, 106, 108, 109, 111, 116, 118, 119, 161, 166, 168, 169, 181, 186, 188, 189, 191, 196, 198, 199, 601, 606, 608, 609, 611, 616, 618, 619, 661, 666, 668, 669, 681, 686, 688, 689, 691, 696, 698, 699
Offset: 1

Views

Author

Keywords

Comments

"No final 0's" means that the rotated number should not have leading zeros; the single digit of the number 0 itself is not considered as such.

Crossrefs

Programs

  • PARI
    is_A045574(n)=n%10 & !setminus(Set(Vec(Str(n))),Vec("01689")) || !n  \\ M. F. Hasler, May 04 2012

Extensions

More terms from Michel Marcus, Dec 27 2020

A080789 Numbers that are primes when turned upside down.

Original entry on oeis.org

11, 19, 61, 68, 101, 109, 110, 116, 118, 161, 166, 169, 181, 188, 190, 199, 601, 608, 610, 616, 619, 661, 680, 1006, 1010, 1018, 1019, 1061, 1066, 1081, 1090, 1091, 1096, 1100, 1106, 1108, 1109, 1118, 1160, 1169, 1180, 1181, 1186, 1601, 1606, 1609, 1610, 1618
Offset: 1

Views

Author

P. Giannopoulos (pgiannop1(AT)yahoo.com), Mar 12 2003

Keywords

References

  • P. Giannopoulos, The Brainteasers (unpublished)

Crossrefs

Programs

  • Python
    from sympy import isprime
    from itertools import product
    def ud(s):
        return s[::-1].translate({ord('6'):ord('9'), ord('9'):ord('6')})
    def auptod(maxdigits):
        alst = []
        for d in range(1, maxdigits+1):
            for start in "16":
                for p in product("01689", repeat=d-1):
                    s = start + "".join(p)
                    t, udt = int(s), int(ud(s))
                    if isprime(udt): alst.append(t)
        return alst
    print(auptod(4)) # Michael S. Branicky, Nov 19 2021

Extensions

610 inserted and a(24) and beyond from Michael S. Branicky, Nov 19 2021

A054044 Grundy function for turn-at-most-7-coins game.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 127, 128, 256, 512, 911, 1024, 1459, 1749, 1897, 2048, 2518, 2787, 2874, 3320, 3357, 3662, 4004, 4096, 8192, 16384, 28687, 32768, 45107, 53333, 57449, 65536, 77910, 86115, 90170, 102520, 106525, 114766, 127012
Offset: 1

Views

Author

N. J. A. Sloane, Apr 29 2000

Keywords

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 433.

Crossrefs

A054045 Grundy function for turn-at-most-8-coins game.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 255, 256, 512, 1024, 2048, 3855, 4096, 8192, 13107, 16384, 21845, 27306, 32768, 38506, 65536, 71576, 92115, 101470, 131072, 138406, 172589, 240014, 262144, 272069, 380556, 524288, 536169, 679601
Offset: 1

Views

Author

N. J. A. Sloane, Apr 29 2000

Keywords

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 433.

Crossrefs

A054046 Grundy function for turn-at-most-9-coins game.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 512, 1024, 2048, 4096, 7711, 8192, 16384, 26215, 32768, 43691, 54613, 65536, 77013, 131072, 143153, 184230, 202940, 262144, 276813, 345179, 480029, 524288, 544139, 761113, 1048576, 1072338
Offset: 1

Views

Author

N. J. A. Sloane, Apr 29 2000

Keywords

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 433.

Crossrefs

A208646 Calendar Problem #27, April 2012 Mathematics Teacher.

Original entry on oeis.org

9861, -1986, 9681, -1896, 8961, -1968, 8691, -1698
Offset: 1

Views

Author

Jonathan Vos Post, Mar 01 2012

Keywords

Comments

The numbers are paired on the basis of rotational symmetry with alternating signs.

Examples

			If you rotate the first number, 9861, 180 degrees about its center, and put a negative sign in front, you get the second number: -1986. Similarly, the third and fourth numbers are rotations of each other, as well as of the fifth and sixth numbers.  Therefore the eighth number is the rotation and negation of the seventh number, 8961, which would be -1698.
		

Crossrefs

Showing 1-6 of 6 results.