cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054090 Triangular array generated by its row sums: T(n,0) = 1 for n >= 0, T(n,1) = r(n-1), T(n,k) = T(n,k-1) - (-1)^k * r(n-k) for k = 2, 3, ..., n, n >= 2, r(h) = sum of the numbers in row h of T.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 2, 3, 1, 10, 6, 8, 7, 1, 32, 22, 26, 24, 25, 1, 130, 98, 108, 104, 106, 105, 1, 652, 522, 554, 544, 548, 546, 547, 1, 3914, 3262, 3392, 3360, 3370, 3366, 3368, 3367, 1, 27400, 23486, 24138, 24008, 24040, 24030, 24034, 24032, 24033
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins as:
  1;
  1,     1;
  1,     2,     1;
  1,     4,     2,     3;
  1,    10,     6,     8,     7;
  1,    32,    22,    26,    24,    25;
  1,   130,    98,   108,   104,   106,   105;
  1,   652,   522,   554,   544,   548,   546,   547;
  1,  3914,  3262,  3392,  3360,  3370,  3366,  3368,  3367;
  1, 27400, 23486, 24138, 24008, 24040, 24030, 24034, 24032, 24033;
		

Crossrefs

Cf. A054091 (row sums).

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, Sum[T[n-1,j], {j,0,n-1}], T[n,k-1] - (-1)^k*Sum[T[n-k,j], {j,0,n-k}]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 23 2022 *)
  • PARI
    {T(n, k)= local(A); if(k<0||k>n, 0, if(k==0, 1, A=vector(n, i, (i>1)+1); for(i=2, n-1, A[i+1]=(i-1)*A[i]+2); sum(i=0, k-1, (-1)^i*A[n-i])))} /* Michael Somos, Nov 19 2006 */
    
  • SageMath
    @CachedFunction
    def T(n, k): # T = A054090
        if (k==0): return 1
        elif (k==1): return sum(T(n-1, j) for j in (0..n-1))
        else: return T(n, k-1) - (-1)^k*sum(T(n-k, j) for j in (0..n-k))
    flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 23 2022

Formula

T(n, k) = T(n, k-1) - (-1)^k * Sum_{j=0..n-k} T(n-k, j), with T(n, 0) = 1, and T(n, 1) = Sum_{j=0..n-1} T(n-1, j).
Sum_{k=0..n} T(n, k) = A054091(n).