A054090 Triangular array generated by its row sums: T(n,0) = 1 for n >= 0, T(n,1) = r(n-1), T(n,k) = T(n,k-1) - (-1)^k * r(n-k) for k = 2, 3, ..., n, n >= 2, r(h) = sum of the numbers in row h of T.
1, 1, 1, 1, 2, 1, 1, 4, 2, 3, 1, 10, 6, 8, 7, 1, 32, 22, 26, 24, 25, 1, 130, 98, 108, 104, 106, 105, 1, 652, 522, 554, 544, 548, 546, 547, 1, 3914, 3262, 3392, 3360, 3370, 3366, 3368, 3367, 1, 27400, 23486, 24138, 24008, 24040, 24030, 24034, 24032, 24033
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 2, 1; 1, 4, 2, 3; 1, 10, 6, 8, 7; 1, 32, 22, 26, 24, 25; 1, 130, 98, 108, 104, 106, 105; 1, 652, 522, 554, 544, 548, 546, 547; 1, 3914, 3262, 3392, 3360, 3370, 3366, 3368, 3367; 1, 27400, 23486, 24138, 24008, 24040, 24030, 24034, 24032, 24033;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Cf. A054091 (row sums).
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, Sum[T[n-1,j], {j,0,n-1}], T[n,k-1] - (-1)^k*Sum[T[n-k,j], {j,0,n-k}]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 23 2022 *)
-
PARI
{T(n, k)= local(A); if(k<0||k>n, 0, if(k==0, 1, A=vector(n, i, (i>1)+1); for(i=2, n-1, A[i+1]=(i-1)*A[i]+2); sum(i=0, k-1, (-1)^i*A[n-i])))} /* Michael Somos, Nov 19 2006 */
-
SageMath
@CachedFunction def T(n, k): # T = A054090 if (k==0): return 1 elif (k==1): return sum(T(n-1, j) for j in (0..n-1)) else: return T(n, k-1) - (-1)^k*sum(T(n-k, j) for j in (0..n-k)) flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 23 2022
Formula
T(n, k) = T(n, k-1) - (-1)^k * Sum_{j=0..n-k} T(n-k, j), with T(n, 0) = 1, and T(n, 1) = Sum_{j=0..n-1} T(n-1, j).
Sum_{k=0..n} T(n, k) = A054091(n).