Original entry on oeis.org
1, 2, 4, 10, 32, 130, 652, 3914, 27400, 219202, 1972820, 19728202, 217010224, 2604122690, 33853594972, 473950329610, 7109254944152, 113748079106434, 1933717344809380, 34806912206568842, 661331331924808000, 13226626638496160002, 277759159408419360044
Offset: 0
-
[n le 2 select n else (n-1)*Self(n-1) -(n-3)*Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 23 2022
-
a:= n-> `if`( n=0, 1, add(2*(n-1)!/j!, j=0..n-1)): seq(a(n), n=0..18); # Zerinvary Lajos, Oct 20 2006
# second Maple program:
a:= proc(n) option remember;
`if`(n=0, 1, 2+(n-1)*a(n-1))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Jun 23 2022
-
Table[If[n==0, 1, 2*(n-1)!*Sum[1/j!, {j,0,n-1}]], {n,0,30}] (* G. C. Greubel, Jun 23 2022 *)
-
{a(n)= local(A); if(n<1, n==0, A=vector(n); A[1]=2; for(k=1, n-1, A[k+1]=k*A[k]+2); A[n])} /* Michael Somos, Nov 19 2006 */
-
{a(n)= if(n<1, n==0, n--; n!*polcoeff( 2*exp(x+x*O(x^n))/(1-x), n))} /* Michael Somos, Nov 19 2006 */
-
[1]+[2*factorial(n-1)*sum(1/factorial(j) for j in (0..n-1)) for n in (1..30)] # G. C. Greubel, Jun 23 2022
Original entry on oeis.org
1, 2, 6, 22, 98, 522, 3262, 23486, 191802, 1753618, 17755382, 197282022, 2387112466, 31249472282, 440096734638, 6635304614542, 106638824162282, 1819969265702946
Offset: 2
Original entry on oeis.org
1, 1, 1, 3, 7, 25, 105, 547, 3367, 24033, 195169, 1777651, 17950551, 199059673, 2405063017, 31448531955, 442501797655, 6666753146497, 107081325959937, 1826636018849443, 32980276187719399, 628351055737088601
Offset: 0
-
{a(n)= local(A); if(n<3, n>=0, A=vector(n, i, 1); for(k=1, n-2, A[k+2]=(k-1)*A[k+1]+ k*A[k]+ 2); A[n])} /* Michael Somos, Nov 19 2006 */
Original entry on oeis.org
1, 2, 2, 8, 24, 106, 546, 3368, 24032, 195170, 1777650, 17950552, 199059672, 2405063018, 31448531954, 442501797656, 6666753146496, 107081325959938, 1826636018849442
Offset: 1
Original entry on oeis.org
1, 4, 6, 26, 104, 548, 3366, 24034, 195168, 1777652, 17950550, 199059674, 2405063016, 31448531956, 442501797654, 6666753146498, 107081325959936, 1826636018849444
Offset: 2
Original entry on oeis.org
1, 10, 22, 108, 544, 3370, 24030, 195172, 1777648, 17950554, 199059670, 2405063020, 31448531952, 442501797658, 6666753146494, 107081325959940, 1826636018849440
Offset: 3
Original entry on oeis.org
3, 8, 26, 108, 554, 3392, 24138, 195716, 1781018, 17974584, 199254842, 2406840668, 31466482506, 442700857328, 6669158209514, 107112774491892, 1827078520647098
Offset: 3
A156184
A generalized recursion triangle sequence : m=1; t(n,k)=(k + m - 1)*t(n - 1, k, m) + (m*n - k + 1 - m)*t(n - 1, k - 1, m).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 7, 16, 7, 1, 1, 11, 53, 53, 11, 1, 1, 16, 150, 318, 150, 16, 1, 1, 22, 380, 1554, 1554, 380, 22, 1, 1, 29, 892, 6562, 12432, 6562, 892, 29, 1, 1, 37, 1987, 25038, 82538, 82538, 25038, 1987, 37, 1, 1, 46, 4270, 89023, 480380, 825380, 480380
Offset: 0
{1},
{1, 1},
{1, 2, 1},
{1, 4, 4, 1},
{1, 7, 16, 7, 1},
{1, 11, 53, 53, 11, 1},
{1, 16, 150, 318, 150, 16, 1},
{1, 22, 380, 1554, 1554, 380, 22, 1},
{1, 29, 892, 6562, 12432, 6562, 892, 29, 1},
{1, 37, 1987, 25038, 82538, 82538, 25038, 1987, 37, 1},
{1, 46, 4270, 89023, 480380, 825380, 480380, 89023, 4270, 46, 1}
-
m = 1; e[n_, 0, m_] := 1;
e[n_, k_, m_] := 0 /; k >= n;
e[n_, k_, 1] := 1 /; k >= n;
e[n_, k_, m_] := (k + m - 1)e[n - 1, k, m] + (m*n - k + 1 - m)e[n - 1, k - 1, m];
Table[Table[e[n, k, m], {k, 0, n}], {n, 0, 10}];
Flatten[%]
A156186
Triangle: m=3; e(n,k,n) = (k + m - 1)*e(n - 1, k, m) + (m*n - k + 1 - m)*e(n - 1, k - 1, m); t(n,k) = e(n,k,m) + e(n,n-k,m).
Original entry on oeis.org
2, 1, 1, 1, 6, 1, 1, 30, 30, 1, 1, 159, 360, 159, 1, 1, 1119, 3639, 3639, 1119, 1, 1, 10932, 41262, 57414, 41262, 10932, 1, 1, 136764, 582642, 898632, 898632, 582642, 136764, 1, 1, 2031933, 9957168, 16634718, 17182152, 16634718, 9957168, 2031933, 1, 1
Offset: 0
{2},
{1, 1},
{1, 6, 1},
{1, 30, 30, 1},
{1, 159, 360, 159, 1},
{1, 1119, 3639, 3639, 1119, 1},
{1, 10932, 41262, 57414, 41262, 10932, 1},
{1, 136764, 582642, 898632, 898632, 582642, 136764, 1},
{1, 2031933, 9957168, 16634718, 17182152, 16634718, 9957168, 2031933, 1},...
-
m = 3; e[n_, 0, m_] := 1;
e[n_, k_, m_] := 0 /; k >= n;
e[n_, k_, 1] := 1 /; k >= n;
e[n_, k_, m_] := (k + m - 1)e[n - 1, k, m] + (m*n - k + 1 - m)e[n - 1, k - 1, m];
Table[Table[e[n, k, m], {k, 0, n - 1}], {n, 1, 10}];
Table[Table[e[n, k, m] + e[n, n - k, m], {k, 0, n}], {n, 0, 10}];
Flatten[%]
A156188
Triangle: m=5; e(n,k,n)=(k + m - 1)*e(n - 1, k, m) + (m*n - k + 1 - m)*e(n - 1, k - 1, m); t(n,k)=e(n,k,m)+e(n,n-k,m).
Original entry on oeis.org
2, 1, 1, 1, 10, 1, 1, 80, 80, 1, 1, 775, 1520, 775, 1, 1, 10915, 25945, 25945, 10915, 1, 1, 213720, 542910, 624670, 542910, 213720, 1, 1, 5245530, 14690640, 16408670, 16408670, 14690640, 5245530, 1, 1, 151534685, 479956020, 553630850, 464654480
Offset: 0
{2},
{1, 1},
{1, 10, 1},
{1, 80, 80, 1},
{1, 775, 1520, 775, 1},
{1, 10915, 25945, 25945, 10915, 1},
{1, 213720, 542910, 624670, 542910, 213720, 1},
{1, 5245530, 14690640, 16408670, 16408670, 14690640, 5245530, 1},...
-
m = 5; e[n_, 0, m_] := 1;
e[n_, k_, m_] := 0 /; k >= n;
e[n_, k_, 1] := 1 /; k >= n;
e[n_, k_, m_] := (k + m - 1)e[n - 1, k, m] + (m*n - k + 1 - m)e[n - 1, k - 1, m];
Table[Table[e[n, k, m], {k, 0, n - 1}], {n, 1, 10}];
Table[Table[e[n, k, m] + e[n, n - k, m], {k, 0, n}], {n, 0, 10}];
Flatten[%]
Showing 1-10 of 10 results.
Comments