cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A030297 a(n) = n*(n + a(n-1)) with a(0)=0.

Original entry on oeis.org

0, 1, 6, 27, 124, 645, 3906, 27391, 219192, 1972809, 19728190, 217010211, 2604122676, 33853594957, 473950329594, 7109254944135, 113748079106416, 1933717344809361, 34806912206568822, 661331331924807979
Offset: 0

Views

Author

N. J. A. Sloane, "Urkonsaud_admin" (miti(AT)tula.sitek.net)

Keywords

Comments

Exponential convolution of factorials (A000142) and squares (A000290). - Vladimir Reshetnikov, Oct 07 2016

Crossrefs

Programs

  • Maple
    f := proc(n) options remember; if n <= 1 then n elif n = 2 then 6 else -n*(n-2)*f(n-3)+(n-3)*n*f(n-2)+3*n*f(n-1)/(n-1); fi; end;
  • Mathematica
    a=0;lst={a};Do[a=(a+n)*n;AppendTo[lst, a], {n, 2*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 14 2008 *)
    RecurrenceTable[{a[0]==0,a[n]==n(n+a[n-1])},a[n],{n,20}] (* Harvey P. Dale, Oct 22 2011 *)
    Round@Table[(2 E Gamma[n, 1] - 1) n, {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Oct 07 2016 *)

Formula

a(n) = A019461(2n).
For n>=2, a(n) = floor(2*e*n! - n - 2). - Benoit Cloitre, Feb 16 2003
a(n) = sum_{k=0...n} (n! / k!) * k^2. - Ross La Haye, Sep 21 2004
E.g.f.: x*(1+x)*exp(x)/(1-x). - Vladeta Jovovic, Dec 01 2004

Extensions

Better description from Henry Bottomley, May 15 2000

A006183 a(n) = (n+1)*a(n-1) + (2-n)*a(n-2).

Original entry on oeis.org

1, 2, 6, 22, 98, 522, 3262, 23486, 191802, 1753618, 17755382, 197282022, 2387112466, 31249472282, 440096734638, 6635304614542, 106638824162282, 1819969265702946, 32873194861759462, 626524419718239158, 12565295306571352002, 264532532769923200042
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A030297(n-1) - A030297(n-2) + 1. Cf. A054096.
Equals 2 * A001339(n+2).

Programs

  • Magma
    [n le 2 select n else n*Self(n-1)+(3-n)*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 06 2016
  • Mathematica
    RecurrenceTable[{a[n] == (n + 1) a[n - 1] + (2 - n) a[n - 2], a[0] == 1, a[1] == 2}, a, {n, 20}] (* Robert G. Wilson v, Jun 15 2013 *)

Formula

G.f.: 2*Sum_{k>=0} k!*(x/(1-x))^k - 1 = Q(0) -1, where Q(k)= 1 + 1/(1 - x*(k+1)/(x*(k+1) + (1-x)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 08 2013

Extensions

More terms from James Sellers, Aug 21 2000
a(1) from Robert G. Wilson v, Jun 15 2013
a(21)-a(22) from Vincenzo Librandi, Mar 06 2016
Showing 1-2 of 2 results.