A054218 Palindromic primes of the form 'primemirp' resulting from A054217.
2, 3, 5, 7, 131, 313, 373, 797, 11311, 17971, 18181, 19991, 35353, 72727, 78787, 90709, 93739, 96769, 98389, 1153511, 1193911, 1201021, 1409041, 1583851, 1597951, 1657561, 1831381, 1879781, 3083803, 3089803, 3319133, 3343433, 3391933, 3541453, 3643463
Offset: 1
Examples
Prime 113 has emirp 311 and 11311 is a palindromic prime.
Links
- Peter Rowlett, Table of n, a(n) for n = 1..8668
Programs
-
Python
from sympy import isprime for i in range(2,10**7): if isprime(i): emirp = int(str(i)[-1::-1]) if isprime(emirp): primemirp = int(str(i)+str(emirp)[1:]) if isprime(primemirp): print(primemirp) # Peter Rowlett, Nov 16 2023
Extensions
a(33)-a(35) from Peter Rowlett, Nov 16 2023
Comments