A054217 Primes p with property that p concatenated with its emirp p' (prime reversal) forms a palindromic prime of the form 'primemirp' (rightmost digit of p and leftmost digit of p' are blended together - p and p' palindromic allowed).
2, 3, 5, 7, 13, 31, 37, 79, 113, 179, 181, 199, 353, 727, 787, 907, 937, 967, 983, 1153, 1193, 1201, 1409, 1583, 1597, 1657, 1831, 1879, 3083, 3089, 3319, 3343, 3391, 3541, 3643, 3853, 7057, 7177, 7507, 7681, 7867, 7949, 9103, 9127, 9173, 9209, 9439, 9547, 9601
Offset: 1
Examples
E.g., prime 113 has emirp 311 and 11311 is a palindromic prime, so 113 is a term.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
empQ[n_]:=Module[{idn=IntegerDigits[n],rev},rev=Reverse[idn];And@@PrimeQ[ {FromDigits[ rev],FromDigits[Join[Most[idn],rev]]}]]; Select[Prime[ Range[ 1200]],empQ] (* Harvey P. Dale, Mar 26 2013 *)
-
Python
from sympy import isprime def ok(n): if not isprime(n): return False s = str(n); srev = s[::-1] return isprime(int(srev)) and isprime(int(s[:-1] + srev)) print([k for k in range(10**4) if ok(k)]) # Michael S. Branicky, Nov 17 2023
Extensions
Corrected (a(30)=3089 inserted) by Harvey P. Dale, Mar 26 2013
Comments