A054242 Triangle read by rows: row n (n>=0) gives the number of partitions of (n,0), (n-1,1), (n-2,2), ..., (0,n) respectively into sums of distinct pairs.
1, 1, 1, 1, 2, 1, 2, 3, 3, 2, 2, 5, 5, 5, 2, 3, 7, 9, 9, 7, 3, 4, 10, 14, 17, 14, 10, 4, 5, 14, 21, 27, 27, 21, 14, 5, 6, 19, 31, 42, 46, 42, 31, 19, 6, 8, 25, 44, 64, 74, 74, 64, 44, 25, 8, 10, 33, 61, 93, 116, 123, 116, 93, 61, 33, 10
Offset: 0
Examples
The second row (n=1) is 1,1 since (1,0) and (0,1) each have a single partition. The third row (n=2) is 1, 2, 1 from (2,0), (1,1) or (1,0)+(0,1), (0,2). In the fourth row, T(1,3)=5 from (1,3), (0,3)+(1,0), (0,2)+(1,1), (0,2)+(0,1)+(1,0), (0,1)+(1,2). The triangle begins: 1; 1, 1; 1, 2, 1; 2, 3, 3, 2; 2, 5, 5, 5, 2; 3, 7, 9, 9, 7, 3; 4, 10, 14, 17, 14, 10, 4; 5, 14, 21, 27, 27, 21, 14, 5; 6, 19, 31, 42, 46, 42, 31, 19, 6; 8, 25, 44, 64, 74, 74, 64, 44, 25, 8; ...
Links
- Alois P. Heinz, Rows n = 0..75, flattened
- S. M. Luthra, Partitions of bipartite numbers when the summands are unequal, Proceedings of the Indian National Science Academy, vol.23, 1957, issue 5A, p. 370-376. [broken link]
- Reinhard Zumkeller, Haskell programs for A054225, A054242, A201376, A201377
Crossrefs
Programs
-
Haskell
see Zumkeller link.
-
Mathematica
max = 10; f[x_, y_] := Product[1 + x^n*y^k, {n, 0, max}, {k, 0, max}]/2; se = Series[f[x, y], {x, 0, max}, {y, 0, max}] ; coes = CoefficientList[ se, {x, y}]; t[n_, k_] := coes[[n-k+1, k+1]]; Flatten[ Table[ t[n, k], {n, 0, max}, {k, 0, n}]] (* Jean-François Alcover, Dec 06 2011 *)
Formula
G.f.: (1/2)*Product(1+x^i*y^j), i, j>=0.
Extensions
Entry revised by N. J. A. Sloane, Nov 30 2011, to incorporate corrections provided by Reinhard Zumkeller, who also contributed the alternative version A201377.
Comments