A054252 Triangle T(n,k) of n X n binary matrices with k=0..n^2 ones under action of dihedral group of the square D_4.
1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 8, 16, 23, 23, 16, 8, 3, 1, 1, 3, 21, 77, 252, 567, 1051, 1465, 1674, 1465, 1051, 567, 252, 77, 21, 3, 1, 1, 6, 49, 319, 1666, 6814, 22475, 60645, 136080, 256585, 410170, 559014, 652048, 652048, 559014, 410170, 256585, 136080
Offset: 0
Examples
T(3,2) = 8 because there are 8 nonisomorphic 3 X 3 binary matrices with two ones under action of D_4: [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 1 1] [1 0 1] [0 1 0] [1 0 0] --------------------------------- [0 0 0] [0 0 0] [0 0 0] [0 0 1] [0 1 0] [0 1 0] [1 0 1] [0 0 0] [0 0 1] [0 1 0] [0 0 0] [1 0 0] Triangle T(n,k) begins: 1; 1, 1; 1, 1, 2, 1, 1; 1, 3, 8, 16, 23, 23, 16, 8, 3, 1;
References
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 42, (2.4.6), p. 37, (2.2.11).
Links
- Heinrich Ludwig, Rows n = 0..16, flattened
- Index entries for sequences related to groups
Programs
-
Mathematica
(* As a triangle *) Prepend[Prepend[Table[CoefficientList[CycleIndexPolynomial[ GraphData[{"Grid", {n, n}}, "AutomorphismGroup"],Table[Subscript[s, i], {i, 1, 4}]] /. Table[Subscript[s, i] -> 1 + x^i, {i, 1, 4}], x], {n, 2, 10}], {1, 1}], {1}] // Grid (* Geoffrey Critzer, Aug 09 2016 *)
-
Sage
def T(n, k): if n == 0 or k == 0 or k == n*n: return 1 grid = graphs.Grid2dGraph(n, n) m = grid.automorphism_group().cycle_index().expand(2, 'b, w') b, w = m.variables() return m.coefficient({b: k, w: n*n-k}) [T(n, k) for n in range(6) for k in range(n*n + 1)] # Freddy Barrera, Nov 23 2018
Comments