A054323 Fifth column of Lanczos triangle A053125 (decreasing powers).
5, 140, 2016, 21120, 183040, 1397760, 9748480, 63504384, 392232960, 2321285120, 13264486400, 73610035200, 398475657216, 2111580405760, 10984378859520, 56221121904640, 283661115064320, 1413061420253184, 6959221409054720
Offset: 0
References
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (20, -160, 640, -1280, 1024).
Programs
-
GAP
List([0..20], n-> 4^n*Binomial(2*n+5, 4)); # G. C. Greubel, Jul 22 2019
-
Magma
[4^n*Binomial(2*n+5, 4): n in [0..20]]; // G. C. Greubel, Jul 22 2019
-
Mathematica
Table[4^n Binomial[2n+5,4],{n,0,20}] (* or *) LinearRecurrence[{20,-160, 640,-1280,1024},{5,140,2016,21120,183040},20] (* Harvey P. Dale, Mar 03 2018 *)
-
PARI
vector(20, n, n--; 4^n*binomial(2*n+5, 4)) \\ G. C. Greubel, Jul 22 2019
-
Sage
[4^n*binomial(2*n+5, 4) for n in (0..20)] # G. C. Greubel, Jul 22 2019
Formula
G.f.: (5 +40*x +16*x^2)/(1-4*x)^5.
E.g.f.: (15 +360*x +1464*x^2 +1664*x^3 +512*x^4)*exp(4*x)/3. - G. C. Greubel, Jul 22 2019
a(n) = 20*a(n-1)-160*a(n-2)+640*a(n-3)-1280*a(n-4)+1024*a(n-5). - Wesley Ivan Hurt, May 02 2021