A054334 1/512 of 11th unsigned column of triangle A053120 (T-Chebyshev, rising powers, zeros omitted).
1, 12, 77, 352, 1287, 4004, 11011, 27456, 63206, 136136, 277134, 537472, 999362, 1790712, 3105322, 5230016, 8580495, 13748020, 21559395, 33153120, 50075025, 74397180, 108864405, 157073280, 223689180, 314707536, 437766252, 602516992, 821063892, 1108479152
Offset: 0
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milan Janjic, Two Enumerative Functions.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 15.
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
GAP
List([0..30], n -> (2*n+10)*Binomial(n+9, 9)/10); # G. C. Greubel, Dec 02 2018
-
Magma
[(2*n+10)*Binomial(n+9, 9)/10: n in [0..40]]; // G. C. Greubel, Dec 02 2018
-
Mathematica
Table[(2*n + 10)*Binomial[n + 9, 9]/10, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2009 *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,12,77,352,1287,4004,11011,27456,63206,136136,277134},30] (* Harvey P. Dale, May 11 2025 *)
-
PARI
vector(40, n, n--; (2*n+10)*binomial(n+9, 9)/10) \\ G. C. Greubel, Dec 02 2018
-
Sage
[(2*n+10)*binomial(n+9, 9)/10 for n in range(40)] # G. C. Greubel, Dec 02 2018
Formula
a(n) = (2*n+10)*binomial(n+9, 9)/10 = ((-1)^n)*A053120(2*n+10, 10)/2^9.
G.f.: (1+x)/(1-x)^11.
a(n) = 2*binomial(n+10, 10) - binomial(n+9, 9). - Paul Barry, Mar 04 2003
a(n) = binomial(n+9,9) + 2*binomial(n+9,10). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
a(n) = binomial(n+9,9)*(n+5)/5. - Antal Pinter, Dec 27 2015
From Amiram Eldar, Jan 26 2022: (Start)
Sum_{n>=0} 1/a(n) = 525*Pi^2 - 1160419/224.
Sum_{n>=0} (-1)^n/a(n) = 525*Pi^2/2 - 82875/32. (End)
Comments