cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054335 A convolution triangle of numbers based on A000984 (central binomial coefficients of even order).

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 20, 16, 6, 1, 70, 64, 30, 8, 1, 252, 256, 140, 48, 10, 1, 924, 1024, 630, 256, 70, 12, 1, 3432, 4096, 2772, 1280, 420, 96, 14, 1, 12870, 16384, 12012, 6144, 2310, 640, 126, 16, 1, 48620, 65536, 51480, 28672, 12012, 3840, 924, 160, 18, 1
Offset: 0

Views

Author

Wolfdieter Lang, Mar 13 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group. The g.f. for the row polynomials p(n,x) (increasing powers of x) is 1/(sqrt(1-4*z)-x*z).
Riordan array (1/sqrt(1-4*x),x/sqrt(1-4*x)). - Paul Barry, May 06 2009
The matrix inverse is apparently given by deleting the leftmost column from A206022. - R. J. Mathar, Mar 12 2013

Examples

			Triangle begins:
    1;
    2,    1;
    6,    4,   1;
   20,   16,   6,   1;
   70,   64,  30,   8,  1;
  252,  256, 140,  48, 10,  1;
  924, 1024, 630, 256, 70, 12, 1; ...
Fourth row polynomial (n=3): p(3,x) = 20 + 16*x + 6*x^2 + x^3.
From _Paul Barry_, May 06 2009: (Start)
Production matrix begins
    2,   1;
    2,   2,  1;
    0,   2,  2,  1;
   -2,   0,  2,  2,  1;
    0,  -2,  0,  2,  2,  1;
    4,   0, -2,  0,  2,  2, 1;
    0,   4,  0, -2,  0,  2, 2, 1;
  -10,   0,  4,  0, -2,  0, 2, 2, 1;
    0, -10,  0,  4,  0, -2, 0, 2, 2, 1; (End)
		

Crossrefs

Row sums: A026671.

Programs

  • GAP
    T:= function(n, k)
        if k mod 2=0 then return Binomial(2*n-k, n-Int(k/2))*Binomial(n-Int(k/2),Int(k/2))/Binomial(k,Int(k/2));
        else return 4^(n-k)*Binomial(n-Int((k-1)/2)-1, Int((k-1)/2));
        fi;
      end;
    Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Jul 20 2019
  • Magma
    T:= func< n, k | (k mod 2) eq 0 select Binomial(2*n-k, n-Floor(k/2))* Binomial(n-Floor(k/2),Floor(k/2))/Binomial(k,Floor(k/2)) else 4^(n-k)*Binomial(n-Floor((k-1)/2)-1, Floor((k-1)/2)) >;
    [[T(n,k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jul 20 2019
    
  • Maple
    A054335 := proc(n,k)
        if k <0 or k > n then
            0 ;
        elif type(k,odd) then
            kprime := floor(k/2) ;
            binomial(n-kprime-1,kprime)*4^(n-k) ;
        else
            kprime := k/2 ;
            binomial(2*n-k,n-kprime)*binomial(n-kprime,kprime)/binomial(k,kprime) ;
        end if;
    end proc: # R. J. Mathar, Mar 12 2013
    # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
    PMatrix(10, n -> binomial(2*(n-1), n-1)); # Peter Luschny, Oct 19 2022
  • Mathematica
    Flatten[ CoefficientList[#1, x] & /@ CoefficientList[ Series[1/(Sqrt[1 - 4*z] - x*z), {z, 0, 9}], z]] (* or *)
    a[n_, k_?OddQ] := 4^(n-k)*Binomial[(2*n-k-1)/2, (k-1)/2]; a[n_, k_?EvenQ] := (Binomial[n-k/2, k/2]*Binomial[2*n-k, n-k/2])/Binomial[k, k/2]; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 08 2011, updated Jan 16 2014 *)
  • PARI
    T(n, k) = if(k%2==0, binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2), 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2));
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    def T(n, k):
        if (mod(k,2)==0): return binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2)
        else: return 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2)
    [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 20 2019
    

Formula

a(n, 2*k+1) = binomial(n-k-1, k)*4^(n-2*k-1), a(n, 2*k) = binomial(2*(n-k), n-k)*binomial(n-k, k)/binomial(2*k, k), k >= 0, n >= m >= 0; a(n, m) := 0 if n
Column recursion: a(n, m)=2*(2*n-m-1)*a(n-1, m)/(n-m), n>m >= 0, a(m, m) := 1.
G.f. for column m: cbie(x)*(x*cbie(x))^m, with cbie(x) := 1/sqrt(1-4*x).
G.f.: 1/(1-x*y-2*x/(1-x/(1-x/(1-x/(1-x/(1-... (continued fraction). - Paul Barry, May 06 2009
Sum_{k>=0} T(n,2*k)*(-1)^k*A000108(k) = A000108(n+1). - Philippe Deléham, Jan 30 2012
Sum_{k=0..floor(n/2)} T(n-k,n-2*k) = A098615(n). - Philippe Deléham, Feb 01 2012
T(n,k) = 4*T(n-1,k) + T(n-2,k-2) for k>=1. - Philippe Deléham, Feb 02 2012
Vertical recurrence: T(n,k) = 1*T(n-1,k-1) + 2*T(n-2,k-1) + 6*T(n-3,k-1) + 20*T(n-4,k-1) + ... for k >= 1 (the coefficients 1, 2, 6, 20, ... are the central binomial coefficients A000984). - Peter Bala, Oct 17 2015