cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054337 7-fold convolution of A000302 (powers of 4).

Original entry on oeis.org

1, 28, 448, 5376, 53760, 473088, 3784704, 28114944, 196804608, 1312030720, 8396996608, 51908706304, 311452237824, 1820797698048, 10404558274560, 58265526337536, 320460394856448, 1734256254517248, 9249366690758656, 48680877319782400, 253140562062868480
Offset: 0

Views

Author

Wolfdieter Lang, Mar 13 2000

Keywords

Comments

With a different offset, number of n-permutations (n>=6) of 5 objects: u, v, z, x, y with repetition allowed, containing exactly six (6) u's. Example: a(1)=28 because we have uuuuuuv, uuuuuvu, uuuuvuu, uuuvuuu, uuvuuuu, uvuuuuu, vuuuuuu, uuuuuuz, uuuuuzu, uuuuzuu, uuuzuuu, uuzuuuu, uzuuuuu, zuuuuuu, uuuuuux, uuuuuxu, uuuuxuu, uuuxuuu, uuxuuuu, uxuuuuu, xuuuuuu, uuuuuuy, uuuuuyu, uuuuyuu, uuuyuuu, uuyuuuu, uyuuuuu, yuuuuuu. - Zerinvary Lajos, Jun 16 2008

Crossrefs

Programs

  • GAP
    List([0..30], n-> 4^n*Binomial(n+6,6)); # G. C. Greubel, Jul 21 2019
  • Magma
    [4^n*Binomial(n+6, 6): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
    
  • Maple
    seq(seq(binomial(i, j)*4^(i-6), j =i-6), i=6..36); # Zerinvary Lajos, Dec 03 2007
    seq(binomial(n+6,6)*4^n,n=0..30); # Zerinvary Lajos, Jun 16 2008
  • Mathematica
    Table[4^n*Binomial[n+6,6], {n,0,30}] (* G. C. Greubel, Jul 21 2019 *)
  • PARI
    vector(30, n, n--; 4^n*binomial(n+6,6) ) \\ G. C. Greubel, Jul 21 2019
    
  • Sage
    [lucas_number2(n, 4, 0)*binomial(n,6)/2^12 for n in range(6, 36)] # Zerinvary Lajos, Mar 11 2009
    

Formula

a(n) = binomial(n+6, 6)*4^n.
G.f.: 1/(1 - 4*x)^7.
a(n) = A054335(n+13, 13).
E.g.f.: (45 + 1080*x + 5400*x^2 + 9600*x^3 + 7200*x^4 + 2304*x^5 + 256*x^6)*exp(4*x)/45. - G. C. Greubel, Jul 21 2019
From Amiram Eldar, Mar 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 8394/5 - 5832*log(4/3).
Sum_{n>=0} (-1)^n/a(n) = 75000*log(5/4) - 83674/5. (End)