A054337 7-fold convolution of A000302 (powers of 4).
1, 28, 448, 5376, 53760, 473088, 3784704, 28114944, 196804608, 1312030720, 8396996608, 51908706304, 311452237824, 1820797698048, 10404558274560, 58265526337536, 320460394856448, 1734256254517248, 9249366690758656, 48680877319782400, 253140562062868480
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
Programs
-
GAP
List([0..30], n-> 4^n*Binomial(n+6,6)); # G. C. Greubel, Jul 21 2019
-
Magma
[4^n*Binomial(n+6, 6): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
Maple
seq(seq(binomial(i, j)*4^(i-6), j =i-6), i=6..36); # Zerinvary Lajos, Dec 03 2007 seq(binomial(n+6,6)*4^n,n=0..30); # Zerinvary Lajos, Jun 16 2008
-
Mathematica
Table[4^n*Binomial[n+6,6], {n,0,30}] (* G. C. Greubel, Jul 21 2019 *)
-
PARI
vector(30, n, n--; 4^n*binomial(n+6,6) ) \\ G. C. Greubel, Jul 21 2019
-
Sage
[lucas_number2(n, 4, 0)*binomial(n,6)/2^12 for n in range(6, 36)] # Zerinvary Lajos, Mar 11 2009
Formula
a(n) = binomial(n+6, 6)*4^n.
G.f.: 1/(1 - 4*x)^7.
a(n) = A054335(n+13, 13).
E.g.f.: (45 + 1080*x + 5400*x^2 + 9600*x^3 + 7200*x^4 + 2304*x^5 + 256*x^6)*exp(4*x)/45. - G. C. Greubel, Jul 21 2019
From Amiram Eldar, Mar 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 8394/5 - 5832*log(4/3).
Sum_{n>=0} (-1)^n/a(n) = 75000*log(5/4) - 83674/5. (End)
Comments