A054353 Partial sums of Kolakoski sequence A000002.
1, 3, 5, 6, 7, 9, 10, 12, 14, 15, 17, 19, 20, 21, 23, 24, 25, 27, 29, 30, 32, 33, 34, 36, 37, 39, 41, 42, 43, 45, 46, 47, 49, 50, 52, 54, 55, 57, 59, 60, 61, 63, 64, 66, 68, 69, 71, 72, 73, 75, 76, 77, 79, 81, 82, 84, 86, 87, 88, 90, 91, 93, 95, 96, 98, 100
Offset: 1
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..10000
- O. Bordelles and B. Cloitre, Bounds for the Kolakoski Sequence, J. Integer Sequences, 14 (2011), #11.2.1.
- Bertran Steinsky, A Recursive Formula for the Kolakoski Sequence A000002, J. Integer Sequences, Vol. 9 (2006), Article 06.3.7.
Crossrefs
Programs
-
Haskell
a054353 n = a054353_list !! (n-1) a054353_list = scanl1 (+) a000002_list -- Reinhard Zumkeller, Aug 03 2013
-
Mathematica
a2 = {1, 2, 2}; Do[ a2 = Join[a2, {1+Mod[n-1, 2]}], {n, 3, 50}, {a2[[n]] } ]; Accumulate[a2] (* Jean-François Alcover, Jun 18 2013 *)
-
Python
from itertools import accumulate def alst(nn): K = Kolakoski() # using Kolakoski() in A000002 return list(accumulate(next(K) for i in range(1, nn+1))) print(alst(66)) # Michael S. Branicky, Jan 12 2021
Formula
a(n) = n + A074286(n) = 2*n - A156077(n) = A156077(n) + 2*A074286(n). - Jean-Christophe Hervé, Oct 05 2014
Comments