cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054363 Number of unlabeled 5-ary cacti having n polygons.

Original entry on oeis.org

1, 1, 5, 15, 85, 510, 4051, 33130, 291925, 2661255, 25059670, 241724380, 2379912355, 23833198140, 242173108050, 2491817151160, 25921371278805, 272256630756265, 2884054952424115, 30784716141936525, 330853932861650870, 3577823885433087690, 38907658120970944700
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=5 of A303912.

Programs

  • Mathematica
    a[n_] := If[n == 0, 1, (Binomial[5*n, n]/(4*n + 1) + DivisorSum[n, Binomial[5*#, #]*EulerPhi[n/#]*Boole[# < n] & ])/n]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jul 17 2017 *)
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, eulerphi(n/d)*binomial(5*d, d))/n - 4*binomial(5*n, n)/(4*n+1)) \\ Andrew Howroyd, May 02 2018

Formula

a(n) = (1/n)*(Sum_{d|n} phi(n/d)*binomial(5*d, d)) - 4*binomial(5*n, n)/(4*n+1) for n > 0. - Andrew Howroyd, May 02 2018
a(n) ~ 5^(5*n + 1/2) / (sqrt(Pi) * n^(5/2) * 2^(8*n + 7/2)). - Vaclav Kotesovec, Jul 17 2017

Extensions

More terms from Jean-François Alcover, Jul 17 2017