cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054410 Susceptibility series H_3 for 2-dimensional Ising model (divided by 2).

Original entry on oeis.org

1, 12, 52, 148, 328, 620, 1052, 1652, 2448, 3468, 4740, 6292, 8152, 10348, 12908, 15860, 19232, 23052, 27348, 32148, 37480, 43372, 49852, 56948, 64688, 73100, 82212, 92052, 102648, 114028, 126220, 139252, 153152, 167948, 183668, 200340, 217992, 236652
Offset: 0

Views

Author

N. J. A. Sloane, May 09 2000

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([1], List([1..40], n-> 2*n*(11+7*n^2)/3)); # G. C. Greubel, Jul 31 2019
  • Magma
    [1] cat [2*n*(11+7*n^2)/3: n in [1..40]]; // G. C. Greubel, Jul 31 2019
    
  • Mathematica
    CoefficientList[Series[(1+8*x+10*x^2+8*x^3+x^4)/(1-x)^4, {x,0,40}],x] (* or *) a[0]=1; a[n_]:= 2*n*(11+7*n^2)/3; Table[a[n], {n,0,40}] (* Indranil Ghosh, Feb 24 2017 *)
    LinearRecurrence[{4,-6,4,-1},{1,12,52,148,328},50] (* Harvey P. Dale, Nov 24 2024 *)
  • PARI
    Vec((1+8*x+10*x^2+8*x^3+x^4)/(1-x)^4 + O(x^40)) \\ Colin Barker, Dec 09 2016
    
  • PARI
    vector(40, n, n--; if(n==0,1, 2*n*(11+7*n^2)/3)) \\ G. C. Greubel, Jul 31 2019
    
  • Python
    def A054410(n):
        if n == 0: return 1
        return 2*(n*(11 + 7*n**2))/3 # Indranil Ghosh, Feb 24 2017
    
  • Sage
    [1]+[2*n*(11+7*n^2)/3 for n in (1..40)] # G. C. Greubel, Jul 31 2019
    

Formula

G.f.: (1 +8*x +10*x^2 +8*x^3 +x^4)/(1-x)^4.
From Colin Barker, Dec 09 2016: (Start)
a(n) = 2*n*(11 + 7*n^2)/3 for n>0.
a(0)=1, a(1)=12, a(2)=52, a(3)=148, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4. (End)
E.g.f.: (3 + 2*x*(18 + 21*x + 7*x^2)*exp(x))/3. - G. C. Greubel, Jul 31 2019