cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054411 Numbers k such that Sum_{j} p_j = Sum_{j} e_j where Product_{j} p_j^(e_j) is the prime factorization of k.

Original entry on oeis.org

1, 4, 27, 48, 72, 108, 162, 320, 800, 1792, 2000, 3125, 3840, 5000, 5760, 6272, 8640, 9600, 10935, 12500, 12960, 14400, 18225, 19440, 21504, 21600, 21952, 24000, 29160, 30375, 31250, 32256, 32400, 36000, 43740, 45056, 48384, 48600, 50625, 54000, 60000, 65610
Offset: 1

Views

Author

Leroy Quet, May 09 2000

Keywords

Comments

Numbers for which the sum of distinct prime factors equals the sum of exponents in the prime factorization, A008472(n)=A001222(n). - Reinhard Zumkeller, Mar 08 2002

Examples

			320 is included because 320 = 2^6 * 5^1 and 2+5 = 6+1.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Plus@@First/@FactorInteger[n]==Plus@@Last/@FactorInteger[n]; lst={};Do[If[f[n],AppendTo[lst,n]],{n,0,3*8!}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 19 2010 *)
    max = 10^12; Sort@Reap[Sow@1; Do[p = Select[IntegerPartitions[se, All, Prime@ Range@ PrimePi@ se], Sort[#] == Union[#] &]; Do[ np = Length[f]; va = IntegerPartitions[se, {np}, Range[se]]; Do[pe = Permutations[v]; Do[z = Times @@ (f^e); If[z <= max, Sow@z], {e, pe}], {v, va}], {f, p}], {se, 2, Log2[max]}]][[2, 1]] (* Giovanni Resta, May 07 2016 *)
  • PARI
    for(n=1,10^6,if(bigomega(n)==sumdiv(n,d,isprime(d)*d),print1(n,",")))
    
  • PARI
    is(n)=my(f=factor(n)); sum(i=1,#f~, f[i,1]-f[i,2])==0 \\ Charles R Greathouse IV, Sep 08 2016
    
  • Sage
    def d(n):
        v=factor(n)[:]; L=len(v); s0=sum(v[j][0] for j in range(L)); s1=sum(v[j][1] for j in range(L))
        return s0-s1
    [k for k in (1..100000) if d(k)==0] # Giuseppe Coppoletta, May 07 2016