cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054432 a(n) = Sum_{1<=k<=n, gcd(k,n)=1} 2^(k-1).

Original entry on oeis.org

1, 1, 3, 5, 15, 17, 63, 85, 219, 325, 1023, 1105, 4095, 5397, 13515, 21845, 65535, 70737, 262143, 333125, 890523, 1397077, 4194303, 4527185, 16236015, 22365525, 57521883, 88429845, 268435455, 272962625, 1073741823, 1431655765, 3679302363, 5726557525
Offset: 1

Views

Author

Keywords

Comments

For n>0, numbers formed by interpreting the reduced residue set of n (the rows of triangle A054431) as binary numbers.

Examples

			For n=6 we have k = 1 and 5 and then 2^0 + 2^4 = 17 = a(6).
		

Crossrefs

Programs

  • Maple
    rrs2bincode := proc(n) local i,z; z := 0; for i from 1 to n-1 do z := z*2; if (1 = igcd(n,i)) then z := z + 1; fi; od; RETURN(z); end;
  • Mathematica
    f[n_] := Sum[2^k, {k, Select[ Range@ n, GCD[#, n] == 1 &] - 1}]; Array[f, 35] (* Robert G. Wilson v, Jul 21 2014 *)
  • PARI
    a(n) = sum(k=1, n, if (gcd(k,n)==1, 2^(k-1), 0)); \\ Michel Marcus, Jul 20 2014
    
  • PARI
    a(n) = subst(Polrev(vector(n, i, gcd(n, i)==1)), x, 2); \\ Michel Marcus, Jul 21 2014

Formula

M * V, where M = A054521 is an infinite lower triangular matrix and V = [1, 2, 4, 8, ...] is a vector. - Gary W. Adamson, Jan 13 2007
a(4*n) = (2^(2*n) + 1)*a(2*n) [think how the reduced residue set of the numbers of the form 4n are formed].
For all primes p and integers e > 1, A054432(p^e) = A019320(p^e)*(((2^(p^(e-1)))-1)* ((2^(p-1))-1))/((2^p)-1).
a(n-1) = Sum_{k=1..n, gcd(n, k) = 1} 2^(k-1). - Vladeta Jovovic, Aug 15 2002

Extensions

Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar
More terms from Michel Marcus, Jul 20 2014