A054441 Convolution of (shifted) A026671 with A000984 (central binomial coefficients of even order).
0, 1, 5, 23, 103, 455, 1993, 8679, 37633, 162643, 701075, 3015563, 12948083, 55513327, 237705547, 1016736115, 4344766607, 18550920063, 79149527249, 337482635279, 1438155203665, 6125448713739, 26077796587441, 110974892937943, 472081467302933, 2007534192877275, 8534465842495133
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
GAP
List([0..30], n-> Sum([0..n], k-> Binomial(2*n, n-k)*Fibonacci(k) )); # G. C. Greubel, Jul 15 2019
-
Magma
[(&+[Binomial(2*n, n-k)*Fibonacci(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jul 15 2019
-
Mathematica
Table[SeriesCoefficient[x/((-x+Sqrt[1-4*x])*Sqrt[1-4*x]),{x,0,n}],{n,0,30}] (* Vaclav Kotesovec, Oct 09 2012 *)
-
Maxima
a(n):=sum(fib(k)*binomial(2*n,n-k),k,1,n); /* Vladimir Kruchinin, Mar 19 2016 */
-
PARI
x='x+O('x^66); concat([0],Vec(x/((-x+sqrt(1-4*x))*sqrt(1-4*x)))) \\ Joerg Arndt, May 06 2013
-
Sage
[sum(binomial(2*n, n-k)*fibonacci(k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jul 15 2019
Formula
G.f.: cbie(x)*x/(-x+1/cbie(x)), with cbie(x)=1/sqrt(1-4*x) = g.f. for A000984.
a(n) = A026671(n) - binomial(2*n, n).
a(n) = Sum_{k=1..n} a(k-1)*binomial(2*(n-k), n-k) + 4^(n-1), n >= 1.
Recurrence: (n-2)*a(n) = 2*(4*n-9)*a(n-1) - (15*n-38)*a(n-2) - 2*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 09 2012
a(n) ~ (sqrt(5)+2)^n/sqrt(5). - Vaclav Kotesovec, Oct 09 2012
a(n) = Sum_{k=1..n} binomial(2*n,n-k)*F(k), where F denotes a Fibonacci number (A000045). - Vladimir Kruchinin, Mar 19 2016