cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054454 Third column of triangle A054453.

Original entry on oeis.org

1, 2, 6, 12, 26, 50, 97, 180, 332, 600, 1076, 1908, 3361, 5878, 10226, 17700, 30510, 52390, 89665, 153000, 260376, 442032, 748776, 1265832, 2136001, 3598250, 6052062, 10164540, 17048642
Offset: 0

Views

Author

Wolfdieter Lang, Apr 27 2000

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,2,6,12,26,50];; for n in [7..30] do a[n]:=2*a[n-1]+2*a[n-2] -4*a[n-3]-2*a[n-4]+2*a[n-5]+a[n-6]; od; a; # G. C. Greubel, Jan 31 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/((1-x^2)*(1-x-x^2)^2) )); // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    CoefficientList[Series[(1/(1-x-x^2))^2/(1-x^2),{x,0,30}],x] (* or *) LinearRecurrence[{2,2,-4,-2,2,1},{1,2,6,12,26,50},30] (* Harvey P. Dale, May 06 2012 *)
  • PARI
    my(x='x+O('x^30)); Vec(1/((1-x^2)*(1-x-x^2)^2)) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    (1/((1-x^2)*(1-x-x^2)^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019
    

Formula

a(n) = A054453(n+2, 2).
a(2*k) = 1 + (8*n*Fibonacci(2*n+1) + 3*(2*n+1)*Fibonacci(2*n))/5.
a(2*k+1) = 2*(2*(2*n+1)*Fibonacci(2*(n+1)) + 3*(n+1)*Fibonacci(2*n+1))/5.
G.f.: ((Fib(x))^2)/(1-x^2), with Fib(x)=1/(1-x-x^2) = g.f. A000045(n+1)(Fibonacci numbers without F(0)).
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3) - 2*a(n-4) + 2*a(n-5) + a(n-6) where a(0)=1, a(1)=2, a(2)=6, a(3)=12, a(4)=26, a(5)=50. - Harvey P. Dale, May 06 2012