cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054455 Row sums of triangle A054453.

Original entry on oeis.org

1, 3, 7, 16, 34, 70, 140, 274, 527, 999, 1871, 3468, 6371, 11613, 21023, 37826, 67688, 120530, 213670, 377252, 663607, 1163361, 2033101, 3542808, 6157045, 10673703, 18460759, 31859716, 54872158, 94326622
Offset: 0

Views

Author

Wolfdieter Lang, Apr 27 2000

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,3,7,16,34,70];; for n in [7..30] do a[n]:=3*a[n-1]-5*a[n-3] +3*a[n-5]+a[n-6]; od; a; # G. C. Greubel, Jan 31 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x^2)^2/(1-x-x^2)^3 )); // G. C. Greubel, Jan 31 2019
    
  • Mathematica
    LinearRecurrence[{3,0,-5,0,3,1}, {1,3,7,16,34,70}, 40] (* or *) CoefficientList[Series[(1-x^2)^2/(1-x-x^2)^3, {x,0,40}],x] (* G. C. Greubel, Jan 31 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x^2)^2/(1-x-x^2)^3) \\ G. C. Greubel, Jan 31 2019
    
  • Sage
    ((1-x^2)^2/(1-x-x^2)^3).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019
    

Formula

a(n) = Sum_{m=0..n} A054453(n, m).
a(n) = ((5*n^2 + 27*n + 50)*F(n+1) + 34*(n+1)*F(n))/50, F(n)= A000045(n) (Fibonacci numbers).
G.f.: ((Fib(x))^3)*(1-x^2)^2, with Fib(x)=1/(1-x-x^2) g.f. for A000045(n+1) (Fibonacci numbers without F(0)).