cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054496 If n = p_1^e_1 * p_2^e_2 * p_3^e_3 * ..., p's = distinct primes, e's = positive integers, then a(n) = p_1^(e_1^2) * p_2^(e_2^2) * p_3^(e_3^2) * ... .

Original entry on oeis.org

1, 2, 3, 16, 5, 6, 7, 512, 81, 10, 11, 48, 13, 14, 15, 65536, 17, 162, 19, 80, 21, 22, 23, 1536, 625, 26, 19683, 112, 29, 30, 31, 33554432, 33, 34, 35, 1296, 37, 38, 39, 2560, 41, 42, 43, 176, 405, 46, 47, 196608, 2401, 1250, 51, 208, 53, 39366, 55, 3584, 57
Offset: 1

Views

Author

Leroy Quet, May 14 2000

Keywords

Examples

			a(24) = 1536, since 24 = 2^3 * 3^1 and 1536 = 2^(3^2) * 3^(1^2).
		

Crossrefs

Programs

  • Haskell
    a054496 n = product $
                zipWith (^) (a027748_row n) (map a000290 $ a124010_row n)
    -- Reinhard Zumkeller, Apr 27 2013
    
  • Maple
    a:= n-> mul(i[1]^(i[2]^2), i=ifactors(n)[2]):
    seq(a(n), n=1..50);  # Alois P. Heinz, Jun 09 2014
  • Mathematica
    f[p_, e_] := p^(e^2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 31 2023 *)
  • PARI
    a(n) = my(f=factor(n)); for (i=1, #f~, f[i,2] = f[i, 2]^2); factorback(f); \\ Michel Marcus, Jun 09 2014