cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054514 Number of ways to place non-crossing diagonals in convex (n+4)-gon so as to create no triangles or quadrilaterals.

Original entry on oeis.org

1, 1, 1, 5, 10, 16, 45, 109, 222, 540, 1341, 3065, 7328, 18112, 43530, 105390, 260254, 639244, 1570257, 3893805, 9669236, 24014264, 59903650, 149806494, 374982790, 940835404, 2365679689, 5955973237, 15018854005, 37935575685, 95942896837, 242954350457, 616034170069, 1563810857705, 3974000543475
Offset: 1

Views

Author

Len Smiley, Apr 08 2000

Keywords

Examples

			a(4)=5 because the octagon has the null placement and four ways to place a single diagonal.
		

Crossrefs

Programs

  • Mathematica
    f[x_] = InverseSeries[Series[(y - y^2 - y^4)/(1 - y), {y, 0, 38}], x];
    CoefficientList[(f[x] - x)/x^4, x]
    (* Second program: *)
    a[n_] := Sum[Binomial[n-2j-1, n-3j-1] Binomial[n+3+j, n+2]/(n+3), {j, 0, (n-1)/3}]; Array[a, 35] (* Jean-François Alcover, Dec 08 2018, after David Callan *)
    Table[HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, 1 - n/3, 4 + n}, {2, 1/2 - n/2, 1 - n/2}, -27/4], {n, 1, 40}] (* Vaclav Kotesovec, Sep 16 2023 *)

Formula

a(n) = Sum_{j=0..(n-1)/3} binomial[n-2j-1, n-3j-1] binomial[n+3+j, n+2]/(n+3). This counts the polygon dissections above by number j of diagonals. - David Callan, Jul 15 2004

Extensions

More terms from Joerg Arndt, Jan 28 2014