cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054516 Equivalent of the Kurepa hypothesis for left factorial.

Original entry on oeis.org

0, 2, 2, 6, -4, 50, -258, 1862, -14824, 133506, -1334950, 14684582, -176214828, 2290792946, -32071101034, 481066515750, -7697064251728, 130850092279682, -2355301661033934, 44750731559645126, -895014631192902100, 18795307255050944562, -413496759611120779858
Offset: 3

Views

Author

Aleksandar Petojevic, Apr 09 2000

Keywords

Programs

  • Magma
    [n eq 3 select 0 else -(n-3)*Self(n-3) + (n-2)*(n-3): n in [3..30]]; // G. C. Greubel, Mar 30 2019
    
  • Mathematica
    (* Assuming offset 0 *)
    Table[(-1)^n*n*((-1)^n - Subfactorial[n - 1]), {n,0,20}] (* Peter Luschny, Dec 30 2016 *)
    RecurrenceTable[{a[n]+(n-3)*a[n-1]==(n-2)*(n-3), a[3]==0}, a, {n,3,30}] (* G. C. Greubel, Mar 30 2019 *)
  • PARI
    m=30; v=concat([0], vector(m-1)); for(n=2, m, v[n]=-(n-1)*v[n-1] + n*(n-1)); v \\ G. C. Greubel, Mar 30 2019
    
  • Sage
    @CachedFunction
    def Self(n):
       if n == 3 : return 0
       return -(n-3)*Self(n-1) + (n-2)*(n-3)
    [Self(n) for n in (3..30)] # G. C. Greubel, Mar 30 2019

Formula

a(3) = 0, a(n) = -(n-3)*a(n-1) + (n-3)*(n-2).
Conjecture: (-n+4)*a(n) + (-n^2+8*n-14)*a(n-1) + (n-2)*(n-4)*a(n-2) = 0. - R. J. Mathar, Jan 31 2014

Extensions

More terms from James Sellers, Apr 09 2000