A054522 Triangle T(n,k): T(n,k) = phi(k) if k divides n, T(n,k)=0 otherwise (n >= 1, 1<=k<=n). T(n,k) = number of elements of order k in cyclic group of order n.
1, 1, 1, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 0, 4, 1, 1, 2, 0, 0, 2, 1, 0, 0, 0, 0, 0, 6, 1, 1, 0, 2, 0, 0, 0, 4, 1, 0, 2, 0, 0, 0, 0, 0, 6, 1, 1, 0, 0, 4, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 1, 1, 2, 2, 0, 2, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 1, 1, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0
Offset: 1
Examples
1; 1, 1; 1, 0, 2; 1, 1, 0, 2; 1, 0, 0, 0, 4; 1, 1, 2, 0, 0, 2; 1, 0, 0, 0, 0, 0, 6; 1, 1, 0, 2, 0, 0, 0, 4; 1, 0, 2, 0, 0, 0, 0, 0, 6;
Links
- Reinhard Zumkeller, Rows n=1..100 of triangle, flattened
- R. J. Mathar, Plots of cycle graphs of the finite groups up to order 36, (2015)
Programs
-
Haskell
a054522 n k = a054522_tabl !! (n-1) !! (k-1) a054522_tabl = map a054522_row [1..] a054522_row n = map (\k -> if n `mod` k == 0 then a000010 k else 0) [1..n] -- Reinhard Zumkeller, Oct 18 2011
-
Maple
A054522 := proc(n,k) if modp(n,k) = 0 then numtheory[phi](k) ; else 0; end if; end proc: seq(seq(A054522(n,k),k=1..n),n=1..15) ; # R. J. Mathar, Aug 06 2016
-
Mathematica
t[n_, k_] /; Divisible[n, k] := EulerPhi[k]; t[, ] = 0; Flatten[Table[t[n, k], {n, 1, 14}, {k, 1, n}]] (* Jean-François Alcover, Nov 25 2011 *) Flatten[Table[If[Divisible[n,k],EulerPhi[k],0],{n,15},{k,n}]] (* Harvey P. Dale, Feb 27 2012 *)
-
PARI
T(n,k)=if(k<1 || k>n,0,if(n%k,0,eulerphi(k)))
Formula
Sum (T(n,k): k = 1 .. n) = n. - Reinhard Zumkeller, Oct 18 2011
T(n,k) = Sum_{d|k} mu(k/d)*gcd(n,d). - Ridouane Oudra, Apr 05 2025
Comments