A054525 Triangle T(n,k): T(n,k) = mu(n/k) if k divides n, T(n,k) = 0 otherwise (n >= 1, 1 <= k <= n).
1, -1, 1, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 1, -1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, -1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
Triangle (with rows n >= 1 and columns k >= 1) begins as follows: 1; -1, 1; -1, 0, 1; 0, -1, 0, 1; -1, 0, 0, 0, 1; 1, -1, -1, 0, 0, 1; -1, 0, 0, 0, 0, 0, 1; 0, 0, 0, -1, 0, 0, 0, 1; ... Matrix inverse is triangle A051731: 1; 1, 1; 1, 0, 1; 1, 1, 0, 1; 1, 0, 0, 0, 1; 1, 1, 1, 0, 0, 1; 1, 0, 0, 0, 0, 0, 1; 1, 1, 0, 1, 0, 0, 0, 1; ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows
- Trevor Hyde, Cyclotomic factors of necklace polynomials, arXiv:1811.08601 [math.CO], 2018.
- N. Metropolis and G.-C. Rota, Witt vectors and the algebra of necklaces, Adv. Math. 50 (1983), 95-125.
- Pieter Moree, The formal series Witt transform, Discr. Math. 295 (2005), 143-160.
Programs
-
Maple
A054525 := proc(n,k) if n mod k = 0 then numtheory[mobius](n/k) ; else 0 ; end if; end proc: # R. J. Mathar, Oct 21 2012
-
Mathematica
t[n_, k_] := If[Divisible[n, k], MoebiusMu[n/k ], 0]; Table[t[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
-
PARI
tabl(nn) = {T = matrix(nn, nn, n, k, if (! (n % k), moebius(n/k), 0)); for (n=1, nn, for (k=1, n, print1(T[n, k], ", ");); print(););} \\ Michel Marcus, Mar 28 2015
-
PARI
row(n) = Vecrev(sumdiv(n, d, moebius(d)*x^(n/d))/x); \\ Michel Marcus, Aug 24 2021
-
Python
from math import isqrt, comb from sympy import mobius def A054525(n): return 0 if (a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))%(b:=n-comb(a,2)) else mobius(a//b) # Chai Wah Wu, Nov 13 2024
Formula
Matrix inverse of triangle A051731, where A051731(n, k) = 1 if k|n, 0 otherwise. - Paul D. Hanna, Jan 09 2006
Bivariate g.f.: Sum_{n, k >= 1} T(n, k)*x^n*y^k = Sum_{m >= 1} mu(m)*x^m*y/(1 - x^m*y). - Petros Hadjicostas, Jun 25 2019
Comments