A054669 Triangular array T(n,k) giving the number of labeled even graphs with n nodes and k edges for n >= 0 and 0 <= k <= n*(n-1-[0 == n mod 2])/2 (with no trailing zeros).
1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 4, 3, 1, 0, 0, 10, 15, 12, 15, 10, 0, 0, 1, 1, 0, 0, 20, 45, 72, 160, 240, 195, 120, 96, 60, 15, 1, 0, 0, 35, 105, 252, 805, 1935, 3255, 4515, 5481, 5481, 4515, 3255, 1935, 805, 252, 105, 35, 0, 0, 1, 1, 0, 0, 56, 210, 672, 2800, 9320, 24087
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n*(n-1-[0==n mod 2])/2) begins: 1; 1; 1; 1, 0, 0, 1; 1, 0, 0, 4, 3; 1, 0, 0, 10, 15, 12, 15, 10, 0, 0, 1; 1, 0, 0, 20, 45, 72, 160, 240, 195, 120, 96, 60, 15; ...
References
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, New York, 1973; pp. 13-15.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1295
- P. J. Cameron, Cohomological aspects of two-graphs, Math. Zeit., 157 (1977), 101-119. [See pp. 116-117, where he uses the informal term "labelled Eulerian graph" for "labelled even graph".]
- math.stackexchange.com, Is it possible disconnected graph has euler circuit? [sic], August 30, 2015.
- Ronald C. Read, Euler graphs on labelled nodes, Canadian Journal of Mathematics, 14 (1962), 482-486.
Crossrefs
Programs
-
Maple
CoeffList := p -> op(PolynomialTools:-CoefficientList(p, x)): w := p -> factor(2^(-p)*(1 + x)^(p*(p - 1)/2)* add(binomial(p, n)*((1 - x)/(1 + x))^(n*(p - n)), n=0..p)): seq(print(CoeffList(w(n))), n = 0..6); # Peter Luschny, Feb 18 2021
-
Mathematica
T[n_] := (1/2^n)(1+x)^Binomial[n, 2] Sum[Binomial[n, k] ((1-x)/(1+x))^(k(n-k)), {k, 0, n}] // CoefficientList[#, x]&; T /@ Range[0, 8] // Flatten (* Jean-François Alcover, Feb 20 2021, after Andrew Howroyd *)
-
PARI
Row(n)=Vecrev(2^(-n)*(1+x)^binomial(n, 2)*sum(k=0, n, binomial(n, k)*((1-x)/(1+x))^(k*(n-k)))) \\ Andrew Howroyd, Jan 05 2021
Formula
T(n,k) = [y^k] 2^(-n)*(1+y)^C(n, 2)*Sum_{s=0..n} C(n, s)*((1-y)/(1+y))^(s*(n-s)).
From Petros Hadjicostas, Feb 18 2021: (Start)
T(n,k) = (1/2^n) * Sum_{s=0..n} binomial(n,s) * Sum_{t=0..k} (-1)^t * binomial(s*(n-s), t) * binomial(binomial(s,2) + binomial(n-s, 2), k-t).
T(n, n*(n-1)/2) = 1 if n is odd.
T(n, n*(n-2)/2) = A001147(n/2) if n is even.
T(n,k) = A058878(n,k) for n >= 0 and 0 <= k <= n*(n-1-[0 == n mod 2])/2. (End)
Extensions
T(0,0) = 1 prepended by Andrew Howroyd, Jan 09 2021
Name edited by Petros Hadjicostas, Feb 18 2021
Comments