cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A054679 First of n consecutive primes which differ by a multiple of 6.

Original entry on oeis.org

2, 23, 47, 251, 1741, 1741, 19471, 118801, 148531, 148531, 406951, 1820111, 2339041, 19725473, 19725473, 73451737, 232301497, 400414121, 489144599, 489144599, 766319189, 766319189, 21549657539, 21549657539, 21549657539, 140432294381, 140432294381, 437339303279, 1552841185921, 1552841185921, 1552841185921
Offset: 1

Views

Author

Jeff Burch, Apr 18 2000

Keywords

Comments

See A276414 for the indices of these primes. - M. F. Hasler, Sep 02 2016
The sequence is infinite, by Shiu's theorem. - Jonathan Sondow, Jun 22 2017

Crossrefs

Formula

a(n) = A000040(A276414(n)). - M. F. Hasler, Sep 02 2016
a(n) = min(A057620(n), A057621(n)) for all n >= 1. - M. F. Hasler, Sep 03 2016

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Nov 09 2000
More terms from Jens Kruse Andersen, May 30 2006
Initial term and a(27)-a(31) added and name edited by M. F. Hasler, Sep 02 2016

A054680 n consecutive primes differ by a multiple of 8 starting at a(n).

Original entry on oeis.org

89, 1823, 20809, 73133, 989647, 3250469, 9065867, 35677501, 101341613, 1383423311, 11312238283, 19201563659, 132932904029, 534956098463, 925195153703, 20151469541389, 20151469541389, 102573904861013
Offset: 2

Views

Author

Jeff Burch, Apr 18 2000

Keywords

Crossrefs

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Nov 09 2000
More terms from Larry Soule (lsoule(AT)gmail.com), Jun 11 2006
a(17)-a(19) from Giovanni Resta, Aug 02 2013

A162865 Initial prime of exactly nine consecutive primes congruent to 1 modulo 4.

Original entry on oeis.org

11593, 206953, 315257, 541097, 906541, 992393, 1124993, 1410361, 1595081, 1781569, 1872049, 2043329, 2090353, 2312749, 2381657, 2481509, 2497289, 2718389, 2758109, 2772409, 2976397, 3863473, 3868849, 4027957, 4042673, 4375141, 4464841, 4547581, 4606153
Offset: 1

Views

Author

Rick L. Shepherd, Jul 15 2009

Keywords

Comments

The table provides all 8919 [=A092660(9)] terms less than 10^9.
If 10 or more consecutive primes are all congruent to 1 modulo 4, none of them is a member of this sequence. - Harvey P. Dale, Oct 23 2011

Crossrefs

Programs

  • Mathematica
    m9Q[l_]:=Module[{ms=Mod[l,4]},First[ms]!=1&&Last[ms]!=1&&Union[Take[ ms,{2,10}]]=={1}]; Transpose[Select[Partition[ Prime[Range[ 290000]], 11,1],m9Q]][[2]] (* Harvey P. Dale, Oct 23 2011 *)

A162866 Initial prime of exactly nine consecutive primes congruent to 3 modulo 4.

Original entry on oeis.org

39607, 278051, 339863, 341827, 402371, 519587, 735211, 919423, 1123219, 1191643, 1263239, 1329763, 1635547, 1648919, 1737863, 1994119, 2191687, 2465227, 2566279, 3025423, 3101743, 3197899, 3306731, 3719467, 4259243, 4466411, 4498883, 4591507, 4680503, 5031863
Offset: 1

Views

Author

Rick L. Shepherd, Jul 15 2009

Keywords

Comments

The table provides all 8949 [=A092661(9)] terms less than 10^9.
If 10 or more consecutive primes are all congruent to 3 modulo 4, none of them is a member of this sequence. - Harvey P. Dale, Oct 23 2011

Crossrefs

Programs

  • Mathematica
    m9Q[l_]:=Module[{ms=Mod[l,4]},First[ms]!=3&&Last[ms]!=3&&Union[ Take[ ms,{2,10}]]=={3}]; Transpose[Select[Partition[Prime[Range[ 320000]], 11,1],m9Q]][[2]] (* Harvey P. Dale, Oct 23 2011 *)

A259360 Initial prime in the least set of exactly n+1 consecutive primes with n gaps all multiples of 4.

Original entry on oeis.org

7, 89, 199, 883, 12401, 463, 36551, 11593, 183091, 766261, 3358169, 241603, 11739307, 9177431, 12270077, 105639091, 310523021, 297779117, 727334879, 5344989829, 1481666377, 2572421893, 1113443017, 79263248027, 84676452781
Offset: 1

Views

Author

Zak Seidov, Jun 24 2015

Keywords

Examples

			a(6)=463 because the first set of 7 consecutive primes is {463,467,479,487,491,499,503} with 6 gaps {4,12,8,4,8,4} all multiples of 4 while the next prime after 503 is 509 and 509-503=6 is not a multiple of 4.
		

Crossrefs

Programs

  • PARI
    back(p,n)=while(n,p=precprime(p-1); n--); p
    v=vector(20); g=0; p=2; forprime(q=3,1e6, if((q-p)%4, if(g&&g<=#v&&v[g]==0, v[g]=back(p,g)); g=0, g++);p=q); v \\ Charles R Greathouse IV, Jul 14 2015

Extensions

a(13)-a(14) corrected by Charles R Greathouse IV, Jul 14 2015
a(24)-a(25) by Zak Seidov, Jul 15 2015

A054694 n consecutive primes differ by 8 or more starting at a(n).

Original entry on oeis.org

89, 199, 683, 683, 683, 1789, 13469, 13469, 13469, 13469, 62687, 62687, 62687, 62687, 200597, 200597, 568441, 568441, 568441, 568441, 568441, 1974079, 3036799, 3059453, 3059453, 3059453, 5949347, 5949347, 5949347, 5949347
Offset: 2

Views

Author

Jeff Burch, Apr 19 2000

Keywords

Crossrefs

Cf. A054678.

Programs

  • Mathematica
    With[{prs=Prime[Range[500000]]},Table[SelectFirst[Partition[prs,n,1],Min[ Differences[ #]]>7&][[1]],{n,2,35}]] (* Harvey P. Dale, Sep 03 2021 *)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Nov 09 2000
Showing 1-6 of 6 results.