cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054686 Multiset consisting of squares and triangular numbers.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 6, 9, 10, 15, 16, 21, 25, 28, 36, 36, 45, 49, 55, 64, 66, 78, 81, 91, 100, 105, 120, 121, 136, 144, 153, 169, 171, 190, 196, 210, 225, 231, 253, 256, 276, 289, 300, 324, 325, 351, 361, 378, 400, 406, 435, 441, 465, 484, 496, 528
Offset: 1

Views

Author

Michael Somos, Apr 19 2000

Keywords

Comments

Terms of A001110 occur twice. [Reinhard Zumkeller, Aug 03 2011]

References

  • Hofstadter, D. R., Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought, (together with the Fluid Analogies Research Group), NY: Basic Books, 1995. p. 15.

Crossrefs

Programs

  • Haskell
    a054686_list = merge a000290_list a000217_list where
       merge xs'@(x:xs) ys'@(y:ys)
         | x <= y    = x : merge xs ys'
         | otherwise = y : merge xs' ys
    -- Reinhard Zumkeller, Aug 03 2011
    
  • Mathematica
    stnos[max_]:=Module[{sqmax=Floor[Sqrt[max]],trmax=Floor[(Sqrt[ 8max+1]- 1)/2]}, Sort[Join[Range[0,sqmax]^2,Accumulate[Range[0,trmax]]]]]; stnos[ 528] (* Harvey P. Dale, Feb 06 2012 *)
  • PARI
    upTo(lim)=vecsort(concat(vector(sqrtint(lim\1)+1,n,(n-1)^2),vector(floor(sqrt(2+2*lim)+1/2),n,n*(n-1)/2))) \\ Charles R Greathouse IV, Aug 04 2011

Extensions

Offset fixed by Reinhard Zumkeller, Aug 04 2011