A054688 Number of nonnegative integer n X n matrices with sum of elements equal to n; polynomial symmetric functions of matrix of order n.
1, 1, 10, 165, 3876, 118755, 4496388, 202927725, 10639125640, 635627275767, 42634215112710, 3172596834321200, 259398433286078100, 23116565732981832150, 2230164446387219893320, 231574204669402103059965, 25751746463640423324267024, 3053419608195531383028424575
Offset: 0
References
- E. R. Cavalcanti and M. A. Spohn, On the applicability of mobility metrics for user movement pattern recognition in MANETs, in Proceeding MobiWac '13 Proceedings of the 11th ACM international symposium on Mobility management and wireless access, Pages 123-130, ACM New York, NY, USA 2013, ISBN: 978-1-4503-2355-0 doi:10.1145/2508222.2508228
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..337
Programs
-
Maple
a:= n-> binomial(n*(n+1)-1, n): seq(a(n), n=0..17); # Alois P. Heinz, Oct 22 2021
-
Mathematica
Table[Binomial[n^2 + n - 1, n], {n, 0, 17}] (* Michael De Vlieger, Oct 05 2017 *)
-
PARI
a(n) = binomial(n^2+n-1, n); \\ Altug Alkan, Oct 03 2017
Formula
a(n) = C(n^2+n-1, n).
a(n) = [x^n] 1/(1 - x)^(n^2). - Ilya Gutkovskiy, Oct 03 2017
a(n) ~ exp(n + 1/2) * n^(n - 1/2) / sqrt(2*Pi). - Vaclav Kotesovec, Aug 06 2025
Extensions
a(15) corrected by Ilya Gutkovskiy, Oct 03 2017
Comments