cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A054703 Number of distinct powers of 2 modulo n.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 3, 4, 6, 5, 10, 4, 12, 4, 4, 5, 8, 7, 18, 6, 6, 11, 11, 5, 20, 13, 18, 5, 28, 5, 5, 6, 10, 9, 12, 8, 36, 19, 12, 7, 20, 7, 14, 12, 12, 12, 23, 6, 21, 21, 8, 14, 52, 19, 20, 6, 18, 29, 58, 6, 60, 6, 6, 7, 12, 11, 66, 10, 22, 13, 35, 9, 9, 37, 20, 20, 30, 13, 39, 8, 54
Offset: 1

Views

Author

Henry Bottomley, Apr 20 2000

Keywords

Crossrefs

Cf. A054704 (base 3), A054705 (4), A054706 (5), A054707 (6), A054708 (7), A054709 (8), A054717 (9), A054710 (10), A351524 (11), A054712 (12), A054713 (13), A054714 (14), A054715 (15), A054716 (16).

Programs

  • Mathematica
    a[n_] := Module[{e = IntegerExponent[n, 2]}, e + MultiplicativeOrder[2, n/2^e]]; Array[a, 100] (* Amiram Eldar, Aug 25 2024 *)

Formula

a(n) = A007814(n) + A007733(n). - Max Alekseyev, May 13 2016

Extensions

Definition improved by T. D. Noe, Jul 21 2008

A054710 Number of powers of 10 mod n.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 6, 4, 1, 2, 2, 3, 6, 7, 2, 5, 16, 2, 18, 3, 6, 3, 22, 4, 3, 7, 3, 8, 28, 2, 15, 6, 2, 17, 7, 3, 3, 19, 6, 4, 5, 7, 21, 4, 2, 23, 46, 5, 42, 3, 16, 8, 13, 4, 3, 9, 18, 29, 58, 3, 60, 16, 6, 7, 7, 3, 33, 18, 22, 7, 35, 4, 8, 4, 3, 20, 6, 7, 13, 5, 9, 6, 41, 8, 17, 22, 28, 5, 44, 2
Offset: 1

Views

Author

Henry Bottomley, Apr 20 2000

Keywords

Crossrefs

Cf. A054703 (base 2), A054704 (3), A054705 (4), A054706 (5), A054707 (6), A054708 (7), A054709 (8), A054717 (9), A351524 (11), A054712 (12), A054713 (13), A054714 (14), A054715 (15), A054716 (16).

Programs

  • Mathematica
    Table[Length[Union[PowerMod[10, Range[0,n], n]]], {n,100}] (* T. D. Noe, Aug 30 2006 *)
    a[n_] := Module[{e = IntegerExponent[n, {2, 5}]}, Max[e] + MultiplicativeOrder[10, n/Times @@ ({2, 5}^e)]]; Array[a, 100] (* Amiram Eldar, Aug 25 2024 *)

Formula

a(n) = A007732(n) + A051628(n). - Amiram Eldar, Aug 25 2024

A054717 Number of powers of 9 modulo n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 5, 2, 3, 3, 3, 2, 8, 2, 9, 2, 4, 5, 11, 2, 10, 3, 3, 3, 14, 3, 15, 4, 6, 8, 6, 2, 9, 9, 4, 2, 4, 4, 21, 5, 3, 11, 23, 3, 21, 10, 9, 3, 26, 3, 10, 3, 10, 14, 29, 3, 5, 15, 4, 8, 6, 6, 11, 8, 12, 6, 35, 2, 6, 9, 11, 9, 15, 4, 39, 2, 3, 4, 41, 4, 8, 21, 15, 5, 44, 3, 3
Offset: 1

Views

Author

Henry Bottomley, Apr 20 2000

Keywords

Examples

			Take the sequence 1, 9, 81, 729, ... and reduce mod n; count distinct terms. For n = 5 we get 1, 4, 1, 4, ... so a(5) = 2.
		

Crossrefs

Cf. A007740.
Cf. A054703 (base 2), A054704 (3), A054705 (4), A054706 (5), A054707 (6), A054708 (7), A054709 (8), A054710 (10), A351524 (11), A054712 (12), A054713 (13), A054714 (14), A054715 (15), A054716 (16).

Programs

  • Mathematica
    With[{p9=9^Range[0,50]},Table[Length[Union[Mod[#,n]&/@p9]],{n,100}]] (* Harvey P. Dale, Apr 22 2012 *)
    a[n_] := IntegerExponent[3*n, 9] + MultiplicativeOrder[9, n/3^IntegerExponent[n, 3]]; Array[a, 100] (* Amiram Eldar, Aug 25 2024 *)

Formula

a(n) = valuation(3*n, 9) + A007740(n). - Amiram Eldar, Aug 25 2024

A351524 Number of powers of 11 modulo n.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 3, 2, 6, 1, 2, 2, 12, 3, 2, 4, 16, 6, 3, 2, 6, 2, 22, 2, 5, 12, 18, 6, 28, 2, 30, 8, 3, 16, 3, 6, 6, 3, 12, 2, 40, 6, 7, 3, 6, 22, 46, 4, 21, 5, 16, 12, 26, 18, 2, 6, 6, 28, 58, 2, 4, 30, 6, 16, 12, 3, 66, 16, 22, 3, 70, 6, 72, 6, 10, 6, 4, 12, 39, 4, 54, 40, 41, 6, 16, 7, 28
Offset: 1

Views

Author

Georg Fischer, Feb 13 2022

Keywords

Comments

This is the original version of A054711 rev. #1 as defined by Henry Bottomley, Apr 20 2000.
A054711 is now different from the sequence here.

Crossrefs

Cf. A054711.
Cf. A054703 (base 2), A054704 (3), A054705 (4), A054706 (5), A054707 (6), A054708 (7), A054709 (8), A054717 (9), A054710 (10), A054712 (12), A054713 (13), A054714 (14), A054715 (15), A054716 (16).

Programs

  • Mathematica
    a[n_] := Module[{e = IntegerExponent[n, 11]}, e + MultiplicativeOrder[11, n/11^e]]; Array[a, 100] (* Amiram Eldar, Aug 25 2024 *)

A054704 Number of powers of 3 modulo n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 2, 3, 4, 5, 3, 3, 6, 5, 4, 16, 3, 18, 4, 7, 5, 11, 3, 20, 3, 4, 6, 28, 5, 30, 8, 6, 16, 12, 4, 18, 18, 4, 4, 8, 7, 42, 10, 6, 11, 23, 5, 42, 20, 17, 6, 52, 4, 20, 6, 19, 28, 29, 5, 10, 30, 8, 16, 12, 6, 22, 16, 12, 12, 35, 4, 12, 18, 21, 18, 30, 4, 78, 4, 5, 8, 41, 7, 16
Offset: 1

Views

Author

Henry Bottomley, Apr 20 2000

Keywords

Crossrefs

Cf. A054703 (base 2), A054705 (4), A054706 (5), A054707 (6), A054708 (7), A054709 (8), A054717 (9), A054710 (10), A351524 (11), A054712 (12), A054713 (13), A054714 (14), A054715 (15), A054716 (16).

Programs

  • Mathematica
    a[n_] := Module[{e = IntegerExponent[n, 3]}, e + MultiplicativeOrder[3, n/3^e]]; Array[a, 100] (* Amiram Eldar, Aug 25 2024 *)

Formula

a(n) = A007734(n) + A007949(n). - Amiram Eldar, Aug 25 2024

A054705 Number of powers of 4 modulo n.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 3, 3, 3, 3, 5, 2, 6, 4, 2, 3, 4, 4, 9, 3, 3, 6, 11, 3, 10, 7, 9, 4, 14, 3, 5, 4, 5, 5, 6, 4, 18, 10, 6, 4, 10, 4, 7, 6, 6, 12, 23, 3, 21, 11, 4, 7, 26, 10, 10, 5, 9, 15, 29, 3, 30, 6, 3, 4, 6, 6, 33, 5, 11, 7, 35, 5, 9, 19, 10, 10, 15, 7, 39, 4, 27, 11, 41, 4, 4, 8, 14, 7, 11
Offset: 1

Views

Author

Henry Bottomley, Apr 20 2000

Keywords

Crossrefs

Cf. A054703 (base 2), A054704 (3), A054706 (5), A054707 (6), A054708 (7), A054709 (8), A054717 (9), A054710 (10), A351524 (11), A054712 (12), A054713 (13), A054714 (14), A054715 (15), A054716 (16).

Programs

  • Mathematica
    a[n_] := IntegerExponent[2*n, 4] + MultiplicativeOrder[4, n/2^IntegerExponent[n, 2]]; Array[a, 100] (* Amiram Eldar, Aug 25 2024 *)

Formula

a(n) = A007735(n) + A244415(n). - Amiram Eldar, Aug 25 2024

A054706 Number of powers of 5 modulo n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 6, 2, 6, 2, 5, 2, 4, 6, 3, 4, 16, 6, 9, 2, 6, 5, 22, 2, 3, 4, 18, 6, 14, 3, 3, 8, 10, 16, 7, 6, 36, 9, 4, 3, 20, 6, 42, 5, 7, 22, 46, 4, 42, 3, 16, 4, 52, 18, 6, 6, 18, 14, 29, 3, 30, 3, 6, 16, 5, 10, 22, 16, 22, 7, 5, 6, 72, 36, 4, 9, 30, 4, 39, 5, 54, 20, 82, 6, 17, 42, 14
Offset: 1

Views

Author

Henry Bottomley, Apr 20 2000

Keywords

Crossrefs

Cf. A054703 (base 2), A054704 (3), A054705 (4), A054707 (6), A054708 (7), A054709 (8), A054717 (9), A054710 (10), A351524 (11), A054712 (12), A054713 (13), A054714 (14), A054715 (15), A054716 (16).

Programs

  • Mathematica
    a[n_] := Module[{e = IntegerExponent[n, 5]}, e + MultiplicativeOrder[5, n/5^e]]; Array[a, 100] (* Amiram Eldar, Aug 25 2024 *)

Formula

a(n) = A007736(n) + A112765(n). - Amiram Eldar, Aug 25 2024

A054707 Number of powers of 6 modulo n.

Original entry on oeis.org

1, 2, 2, 3, 1, 2, 2, 4, 3, 2, 10, 3, 12, 3, 2, 5, 16, 3, 9, 3, 3, 11, 11, 4, 5, 13, 4, 4, 14, 2, 6, 6, 11, 17, 2, 3, 4, 10, 13, 4, 40, 3, 3, 12, 3, 12, 23, 5, 14, 6, 17, 14, 26, 4, 10, 5, 10, 15, 58, 3, 60, 7, 4, 7, 12, 11, 33, 18, 12, 3, 35, 4, 36, 5, 6, 11, 10, 13, 78, 5, 5, 41, 82, 4, 16
Offset: 1

Views

Author

Henry Bottomley, Apr 20 2000

Keywords

Crossrefs

Cf. A054703 (base 2), A054704 (3), A054705 (4), A054706 (5), A054708 (7), A054709 (8), A054717 (9), A054710 (10), A351524 (11), A054712 (12), A054713 (13), A054714 (14), A054715 (15), A054716 (16).

Programs

  • Mathematica
    a[n_] := Module[{e = IntegerExponent[n, {2, 3}]}, Max[e] + MultiplicativeOrder[6, n/Times @@ ({2, 3}^e)]]; Array[a, 100] (* Amiram Eldar, Aug 25 2024 *)

Formula

a(n) = A007737(n) + A244417(n). - Amiram Eldar, Aug 25 2024

A054708 Number of powers of 7 modulo n.

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 2, 2, 3, 4, 10, 2, 12, 2, 4, 2, 16, 3, 3, 4, 2, 10, 22, 2, 4, 12, 9, 3, 7, 4, 15, 4, 10, 16, 5, 6, 9, 3, 12, 4, 40, 2, 6, 10, 12, 22, 23, 2, 3, 4, 16, 12, 26, 9, 20, 3, 3, 7, 29, 4, 60, 15, 4, 8, 12, 10, 66, 16, 22, 5, 70, 6, 24, 9, 4, 6, 11, 12, 78, 4, 27, 40, 41, 3, 16, 6
Offset: 1

Views

Author

Henry Bottomley, Apr 20 2000

Keywords

Crossrefs

Cf. A054703 (base 2), A054704 (3), A054705 (4), A054706 (5), A054707 (6), A054709 (8), A054717 (9), A054710 (10), A351524 (11), A054712 (12), A054713 (13), A054714 (14), A054715 (15), A054716 (16).

Programs

  • Mathematica
    a[n_] := Module[{e = IntegerExponent[n, 7]}, e + MultiplicativeOrder[7, n/7^e]]; Array[a, 100] (* Amiram Eldar, Aug 25 2024 *)

Formula

a(n) = A007738(n) + A214411(n). - Amiram Eldar, Aug 25 2024

A054709 Number of powers of 8 modulo n.

Original entry on oeis.org

1, 2, 2, 2, 4, 3, 1, 2, 2, 5, 10, 3, 4, 2, 4, 3, 8, 3, 6, 5, 2, 11, 11, 3, 20, 5, 6, 2, 28, 5, 5, 3, 10, 9, 4, 3, 12, 7, 4, 5, 20, 3, 14, 11, 4, 12, 23, 4, 7, 21, 8, 5, 52, 7, 20, 2, 6, 29, 58, 5, 20, 6, 2, 3, 4, 11, 22, 9, 22, 5, 35, 3, 3, 13, 20, 7, 10, 5, 13, 6, 18, 21, 82, 3, 8, 15, 28
Offset: 1

Views

Author

Henry Bottomley, Apr 20 2000

Keywords

Crossrefs

Cf. A007739.
Cf. A054703 (base 2), A054704 (3), A054705 (4), A054706 (5), A054707 (6), A054708 (7), A054717 (9), A054710 (10), A351524 (11), A054712 (12), A054713 (13), A054714 (14), A054715 (15), A054716 (16).

Programs

  • Mathematica
    a[n_] := IntegerExponent[4*n, 8] + MultiplicativeOrder[8, n/2^IntegerExponent[n, 2]]; Array[a, 100] (* Amiram Eldar, Aug 25 2024 *)

Formula

a(n) = valuation(4*n, 8) + A007739(n). - Amiram Eldar, Aug 25 2024
Showing 1-10 of 14 results. Next